Кеплера законы

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
КА КВ КЕ КЁ КЗ КИ КЙ КЛ КМ КН КО КП КР КС КТ КУ КХ КШ КЫ КЬ КЭ КЮ КЯ
КЕБ
КЕВ
КЕГ
КЕД
КЕЕ
КЕЗ
КЕЙ
КЕК
КЕЛ
КЕМ
КЕН
КЕП
КЕР
КЕС
КЕТ
КЕУ
КЕФ
КЕХ
КЕЦ
КЕЧ
КЕШ
КЕЭ

Кеплера законы, три закона движения планет, открытые И. Кеплером в начале 17 в. Основной труд Кеплера «Новая астрономия», напечатанный в 1609, содержал два первых закона. Третий закон был открыт позднее: в 3-й главе 5-й книги «Гармония Мира» (1619) Кеплер отметил, что идея нового закона блеснула у него внезапно 8 марта 1618 года, а 15 мая он закончил все необходимые вычисления, которые показали, что закон верен. В дальнейшем Кеплера законы уточнялись и окончательно получили следующую формулировку.

  Первый Кеплера законы В невозмущённом движении (т. е. в задаче двух тел) орбита движущейся точки есть кривая второго порядка, в одном из фокусов которой находится центр силы притяжения. Таким образом, орбита материальной точки в невозмущённом движении — это некоторое коническое сечение, то есть окружность, эллипс, парабола или гипербола. Второй Кеплера законы В невозмущенном движении площадь, описываемая радиус-вектором движущейся точки, изменяется пропорционально времени. Первые два Кеплера законы имеют место только для невозмущенного движения, происходящего под действием силы притяжения, обратно пропорциональной квадрату расстояния до центра силы. Третий Кеплера законы В невозмущенном эллиптическом движении двух материальных точек произведение квадратов времен обращения на суммы масс центральной и движущейся точек как кубы больших полуосей их орбит, т. е. ,

где Т1 и Т2 — периоды обращения двух точек, m1 и m2 — их массы, m0 — масса центральной точки, a1 и а2 — большие полуоси орбит точек. Пренебрегая массами планет по сравнению с массой Солнца,  получаем третий Кеплера законы в его первоначальной форме: квадраты периодов обращений двух планет вокруг Солнца относятся как кубы больших полуосей их эллиптических орбит. Третий Кеплера законы может быть применен только для случая эллиптических орбит, а поэтому не имеет такого общего значения, как два первых закона. Однако, будучи применен к планетам, спутникам планет, компонентам двойных звёзд, движущимся по эллиптическим орбитам, он позволяет определить некоторые характеристики небесных светил. Так, на основании третьего Кеплера законы возможно подсчитать массы планет, принимая массу Солнца m0 = 1. Зная из наблюдений период обращения одного компонента двойной звезды относительно другого и измерив её параллакс, можно найти сумму их масс. Если параллаксы звёзд неизвестны, то на основании допущения, что массы компонентов соответствуют их физическим особенностям, по третьему Кеплера законы можно вычислить расстояния до звёзд (это так называемы динамические параллаксы звёзд).

  Открыв первые два закона, Кеплер составил основанные на них таблицы движения планет, опубликованные в 1627 под названием «Рудольфовых таблиц». Эти таблицы по своей точности далеко превзошли все прежние, ими пользовались в практической астрономии на протяжении 17 и 18 вв. Успех Кеплера в объяснении движения планет обусловлен новым методологическим подходом к решению вопроса: впервые в истории астрономии была сделана попытка определить планетные орбиты непосредственно из наблюдений.

  Уже Кеплеру было ясно, что открытые им законы не являются совершенно строгими. Если для планет они выполняются с большой точностью, то для того, чтобы представить движение Луны, оказалось необходимым ввести эллипс с вращающейся линией апсид и добавить неравенства, называемые эвекцией и вариацией. Эти неравенства были открыты эмпирически ещё Птолемеем во 2 в. (эвекция) и Т. Браге в 16 в. (вариация) и объяснены только после открытия в 17 в. И. Ньютоном закона всемирного тяготения (см. Ньютона закон тяготения). Кеплера законы, найденные из наблюдений, были выведены Ньютоном как строгое решение задачи двух тел.

 

  Лит.: Дубошин Г. Н., Небесная механика. Основные задачи и методы, 2 изд., М., 1968: Субботин М. Ф., Введение в теоретическую астрономию, М., 1968; Рябов Ю. А., К 350-летию открытия первых двух законов Кеплера, в кн.: Астрономический календарь на 1959, М., 1958.

  Г. А. Чеботарёв.

Так же Вы можете узнать о...


Джильи Беньямино Джильи (Gigli) Беньямино (20.3.1890, Реканати, — 30.
«Дольче стиль нуово» (итал. «Dolce stil nuovo» — «Сладостный новый стиль»), итальянская поэтическая школа конца 13 в.
Ежа сборная (Dactylis glomerata), многолетнее травянистое растение семейства злаков.
Зайсанская котловина, межгорная котловина в Казахской ССР, между хребтами Южного Алтая на С.
Зоил (Zōílos), древнегреческий философ и ритор 4 в.
Иммунитет растений, невосприимчивость растений к возбудителям болезней и вредителям, а также к продуктам их жизнедеятельности.
Испытания материалов, определение технологических и эксплуатационных свойств материалов, главным образом с помощью машин и приборов.
Каменка (пос. гор. типа в Приморском крае) Каменка, посёлок городского типа в Тетюхинском районе Приморского края РСФСР.
Картина (часть акта в пьесе) Картина, законченная часть акта в пьесе, сценическом представления.
Кибартай, город в Вилкавишкском районе Литовской ССР.
Ковалевский Евграф Петрович [10(21).12.1790, Харьков, — 18(30).
Комунерос (течение в Испанской революции 1820-23) Комунерос, Конфедерация испанских комунерос, левое течение в Испанской революции 1820—23, сложившееся как тайная организация в конце 1820.
Кортико-висцеральные отношения (от лат. cortex — кора и viscera — внутренности), естественное функциональное взаимодействие между корой больших полушарий головного мозга (КБП) и внутренними органами (ВО), воспроизводимое и в условиях эксперимента.