ИзгибБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Изгиб в сопротивлении материалов, вид деформации, характеризующийся искривлением (изменением кривизны) оси или срединной поверхности деформируемого объекта (бруса, балки, плиты, оболочки и др.) под действием внешних сил или температуры. Применительно к прямому брусу различают Изгиб: простой, или плоский, при котором внешние силы лежат в одной из главных плоскостей бруса (т. е. плоскостей, проходящих через его ось и главные оси инерции поперечного сечения) (см. Моменты инерции); сложный, вызываемый силами, расположенными в разных плоскостях; косой, являющийся частным случаем сложного Изгиб (см. Косой изгиб). В зависимости от действующих в поперечном сечении бруса силовых факторов (рис. 1, а, б) Изгиб называется чистым (при наличии только изгибающих моментов) и поперечным (при наличии также и поперечных сил). В инженерной практике рассматривается также особый случай Изгиб — продольный Изгиб (рис. 1, в), характеризующийся выпучиванием стержня под действием продольных сжимающих сил (см. Продольный изгиб). Одновременное действие сил, направленных по оси стержня и перпендикулярно к ней, вызывает продольно-поперечный Изгиб (рис. 1, г). Рис. 1. Изгиб бруса: а — чистый: б — поперечный; в — продольный; г — продольно-поперечный. Приближённый расчёт прямого бруса на действие Изгиб в упругой стадии производится в предположении, что поперечные сечения бруса, плоские до Изгиб, остаются плоскими и после него (гипотеза плоских сечений); полагают также, что продольные волокна бруса при Изгиб не давят друг на друга и не стремятся оторваться одно от другого. При плоском Изгиб в поперечных сечениях бруса возникают нормальные и касательные напряжения. Нормальные напряжения s в произвольном волокне какого-либо поперечного сечения бруса (рис. 2), лежащем на расстоянии y от нейтральной оси, определяются формулой Рис. 2. Чистый изгиб прямого бруса в упругой стадии: а — элемент бруса; б — поперечное сечение; в — эпюра нормальных напряжений. Расчёт бруса на Изгиб с учётом пластических деформаций приближённо производится в предположении, что при возрастании нагрузки (изгибающего момента) первоначально в крайних точках (волокнах), а затем и во всём поперечном сечении возникают пластические деформации. Распределение напряжений в предельном состоянии имеет вид двух прямоугольников с ординатами, равными пределу текучести материала sт, при этом кривизна бруса неограниченно возрастает. Такое состояние в сечении называется пластическим шарниром, а соответствующий ему момент является предельным и определяется по формуле
Лит. см. при ст. Сопротивление материалов. Л. В. Касабьян. |
||||||||||||||||||||||||||||||||||||||||||||||
|