Бета-распад

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
БА БВ БД БЕ БЁ БЖ БЗ БИ БЛ БО БП БР БУ БХ БЫ БЬ БЭ БЮ БЯ
БЕА
БЕБ
БЕВ
БЕГ
БЕД
БЕЕ
БЕЖ
БЕЗ
БЕЙ
БЕК
БЕЛ
БЕМ
БЕН
БЕО
БЕП
БЕР
БЕС
БЕТ
БЕХ
БЕЦ
БЕЧ
БЕШ
БЕЩ
БЕЭ
БЕЯ

Бета-распад,b-распад, радиоактивный распад атомного ядра, сопровождающийся вылетом из ядра электрона или позитрона. Этот процесс обусловлен самопроизвольным превращением одного из нуклонов ядра в нуклон другого рода, а именно: превращением либо нейтрона (n) в протон (p), либо протона в нейтрон. В первом случае из ядра вылетает электрон (е-) — происходит так называемый b--распад. Во втором случае из ядра вылетает позитрон (е+) — происходит b+-распад. Вылетающие при Бета-распад электроны и позитроны носят общее название бета-частиц. Взаимные превращения нуклонов сопровождаются появлением ещё одной частицынейтрино (n) в случае b+-распада или антинейтрино  в случае b--распада. При b--распаде число протонов (Z) в ядре увеличивается на единицу, а число нейтронов уменьшается на единицу. Массовое число ядра А, равное общему числу нуклонов в ядре, не меняется, и ядропродукт представляет собой изобар исходного ядра, стоящий от него по соседству справа в периодической системе элементов. Наоборот, при b+-распаде число протонов уменьшается на единицу, а число нейтронов увеличивается на единицу и образуется изобар, стоящий по соседству слева от исходного ядра. Символически оба процесса Бета-распад записываются в следующем виде:

Бета-спектр RaE (пример <span style='font-family:Symbol'>b</span> -спектра тяжёлого элемента). Бета-распад.

Бета-спектр RaE (пример b -спектра тяжёлого элемента).

где  — символ ядра, состоящего из Z протонов и АZ нейтронов.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв, на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией). Бета-распад.

Бета-спектр нейтрона. На оси абсцисс отложена кинетич. энергия электронов Е в кэв, на оси ординат — число электронов N (Е) в относительных единицах (вертикальными чёрточками обозначены пределы ошибок измерений электронов с данной энергиией).

  Простейшим примером (b--распада является превращение свободного нейтрона в протон с испусканием электрона и антинейтрино (период полураспада нейтрона » 13 мин):

Более сложный пример (b--распада — распад тяжёлого изотопа водорода — трития, состоящего из двух нейтронов (n) и одного протона (p):

Очевидно,что этот процесс сводится к b--распаду связанного (ядерного) нейтрона. В этом случае b-радиоактивное ядро трития превращается в ядро следующего в периодической таблице элемента — ядро лёгкого изотопа гелия 32Не.

  Примером b+-распада может служить распад изотопа углерода 11С по следующей схеме:

Этот процесс можно представить как распад связанного протона

В этом случае ядро углерода превращается в ядро предшествующего ему в периодической таблице элемента — бора.

  Превращение протона в нейтрон внутри ядра может происходить и в результате захвата протоном одного из электронов с электронной оболочки атома. Чаще всего происходит захват электрона  с ближайшей к ядру К-оболочки, т. н. К-захват. При К-захвате, как и при b+-распаде, образуется изобар, стоящий в периодической системе элементов слева от исходного ядра. Уравнение К-захвата имеет вид:

После захвата К-электрона на освободившееся место переходят электроны с более высоких оболочек; при этом испускается фотон. Т. о., К-захват сопровождается испусканием характеристического рентгеновского излучения. Примером К-захвата может служить реакция, при которой ядро изотопа бериллия захватывает К-электрон и превращается в ядро лития:

  Бета-распад наблюдается как у естественно-радиоактивных, так и у искусственно-радиоактивных изотопов. Для того чтобы ядро было неустойчиво по отношению к одному из типов b-превращения (т. е. могло испытать Бета-распад), сумма масс частиц в левой части уравнения реакции должна быть больше суммы масс продуктов превращения. Поэтому при Бета-распад происходит выделение энергии. Энергию Бета-распад Еb можно вычислить по этой разности масс, пользуясь соотношением Е = mc2, где с — скорость света в вакууме. В случае b-распада

где М — массы нейтральных атомов. В случае b+-распада нейтральный атом теряет один из электронов в своей оболочке, энергия Бета-распад равна:

где me — масса электрона.

  Энергия Бета-распад распределяется между тремя частицами: электроном (или позитроном), антинейтрино (или нейтрино) и ядром; каждая из лёгких частиц может уносить практически любую энергию от 0 до Eb т. е. их энергетические спектры являются сплошными. Лишь при К-захвате нейтрино уносит всегда одну и ту же энергию.

  Итак, при b--распаде масса исходного атома превышает массу конечного атома, а при b+-распаде это превышение составляет не менее двух электронных масс.

  Исследование Бета-распад ядер неоднократно ставило учёных перед неожиданными загадками. После открытия радиоактивности явление Бета-распад долгое время рассматривалось как аргумент в пользу наличия в атомных ядрах электронов; это предположение оказалось в явном противоречии с квантовой механикой (см. Ядро атомное). Затем непостоянство энергии электронов, вылетающих при Бета-распад, даже породило у некоторых физиков неверие в закон сохранения энергии, т.к. было известно, что в этом превращении участвуют ядра, находящиеся в состояниях с вполне определённой энергией. Максимальная энергия вылетающих из ядра электронов как раз равна разности энергий начального и конечного ядер. Но в таком случае было непонятно, куда исчезает энергия, если вылетающие электроны несут меньшую энергию. Предположение немецкого учёного В. Паули о существовании новой частицынейтрино — спасло не только закон сохранения энергии, но и другой важнейший закон физики — закон сохранения момента количества движения. Поскольку спины (т. е. собственные моменты) нейтрона и протона равны 1/2, то для сохранения спина в правой части уравнений Бета-распад может находиться лишь нечётное число частиц со спином 1/2. В частности, при b--распаде свободного нейтрона n ® p + e- + n только появление антинейтрино исключает нарушение закона сохранения момента количества движения.

  Бета-распад имеет место у элементов всех частей периодической системы. Тенденция к b-превращению возникает вследствие наличия у ряда изотопов избытка нейтронов или протонов по сравнению с тем количеством, которое отвечает максимальной устойчивости. Т. о., тенденция к b+-распаду или К-захвату характерна для нейтронодефицитных изотопов, а тенденция к b--распаду — для нейтроноизбыточных изотопов. Известно около 1500 b-радиоактивных изотопов всех элементов периодической системы, кроме самых тяжёлых (Z ³ 102).

Энергия Бета-распад ныне известных изотопов лежит в пределах от

периоды полураспада заключены в широком интервале от 1,3 · 10-2сек (12N) до ~ 2 1013 лет (природный радиоактивный изотоп 180W).

  В дальнейшем изучение Бета-распад неоднократно приводило физиков к крушению старых представлений. Было установлено, что Бета-распад управляют силы совершенно новой природы. Несмотря на длительный период, прошедший со времени открытия Бета-распад, природа взаимодействия, обусловливающего Бета-распад, исследована далеко не полностью. Это взаимодействие назвали «слабым», т.к. оно в 1012 раз слабее ядерного и в 109 раз слабее электромагнитного (оно превосходит лишь гравитационное взаимодействие; см. Слабые взаимодействия). Слабое взаимодействие присуще всем элементарным частицам (кроме фотона). Прошло почти полвека, прежде чем физики обнаружили, что в Бета-распад может нарушаться симметрия между «правым» и «левым». Это несохранение пространственной чётности было приписано свойствам слабых взаимодействий.

  Изучение Бета-распад имело и ещё одну важную сторону. Время жизни ядра относительно Бета-распад и форма спектра b-частиц зависят от тех состояний, в которых находятся внутри ядра исходный нуклон и нуклон-продукт. Поэтому изучение Бета-распад, помимо информации о природе и свойствах слабых взаимодействий, значительно пополнило представления о структуре атомных ядер.

  Вероятность Бета-распад существенно зависит от того, насколько близки друг к другу состояния нуклонов в начальном и конечном ядрах. Если состояние нуклона не меняется (нуклон как бы остаётся на прежнем месте), то вероятность максимальна и соответствующий переход начального состояния в конечное называется разрешённым. Такие переходы характерны для Бета-распад лёгких ядер. Лёгкие ядра содержат почти одинаковое число нейтронов и протонов. У более тяжёлых ядер число нейтронов больше числа протонов. Состояния нуклонов разного сорта существенно отличны между собой. Это затрудняет Бета-распад; появляются переходы, при которых Бета-распад происходит с малой вероятностью. Переход затрудняется также из-за необходимости изменения спина ядра. Такие переходы называются запрещёнными. Характер перехода сказывается и на форме энергетического спектра b-частиц.

  Экспериментальное исследование энергетического распределения электронов, испускаемых b-радиоактивными ядрами (бета-спектра), производится с помощью бета-спектрометров. Примеры b-спектров приведены на рис. 1 и рис. 2.

 

  Лит.: Альфа-, бетаи гамма-спектроскопия, под ред. К. Зигбана, пер. с англ., в. 4, М., 1969, гл. 22—24; Экспериментальная ядерная физика, под ред. Э. Сегре, пер. с англ., т. 3, М., 1961.

  Е. М. Лейкин.

Так же Вы можете узнать о...


Кёльн-Линденталь (Koln-Lindenthal), раннее неолитическое поселение в пригороде Кельна (ФРГ).
Коммунистическая партия Лесото (КПЛ; The Communist Party of Lesotho, Mokhatio oa Makomonisi a Lesotho), основана 5 мая 1962 на Учредительном съезде, принявшем программу и устав партии.
Красун, красуля (Anisoplia segetum), жук семейства пластинчатоусых.
Ламаизм, одно из течений в буддизме; распространено в автономных районах Тибет и Внутренняя Монголия (КНР), МНР, а также в отдельных районах Непала и Индии.
Логика предикатов, раздел математической логики, изучающий логические законы, общие для любой области объектов исследования (содержащей хоть один объект) с заданными на этих объектах предикатами (т.
Мапунгубве (Mapungubwe), комплекс археологических культур в Южной Африке (назван от скалы на берегу реки Лимпопо, близ Мессины).
Меш (от англ. mesh — петля, ячейка сети, отверстие сита), единица измерения, характеризующая плетёные проволочные сита (сетки); обозначает число отверстии, приходящихся на 1 линейный дюйм (25,4 мм).
Мохевцы, грузины, живущие на территории исторической области Грузии Хеви (ныне в пределах Казбегского района Грузинской ССР).
Неравновесные процессы, в термодинамике и статистической физике — физические процессы, включающие неравновесные состояния.
Одночлен, простейший вид алгебраических выражений, рассматриваемых в элементарной алгебре.