Гамма-спектрометр

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ГА ГБ ГВ ГД ГЕ ГЁ ГЖ ГЗ ГИ ГЛ ГМ ГН ГО ГП ГР ГС ГУ ГХ ГЫ ГЬ ГЭ ГЮ ГЯ
ГАА
ГАБ
ГАВ
ГАГ
ГАД
ГАЕ
ГАЗ
ГАИ
ГАЙ
ГАК
ГАЛ
ГАМ
ГАН
ГАО
ГАП
ГАР
ГАС
ГАТ
ГАУ
ГАФ
ГАХ
ГАЦ
ГАШ
ГАЭ
ГАЮ
ГАЯ

Гамма-спектрометр, прибор для измерения спектра гамма-излучения. В большинстве Гамма-спектрометр энергия и интенсивность потока -g-квантов определяются не непосредственно, а измерением энергии и интенсивности потока вторичных заряженных частиц, возникающих в результате взаимодействия g-излучения с веществом. Исключение составляет кристалл-дифракционный Гамма-спектрометр, непосредственно измеряющий длину волны -g-излучения (см. ниже).

  Основными характеристиками Гамма-спектрометр являются эффективность и разрешающая способность. Эффективность определяется вероятностью образования вторичной частицы и вероятностью её регистрации. Разрешающая способность Гамма-спектрометр характеризует возможность разделения двух гамма-линий, близких по энергии. Мерой разрешающей способности обычно служит относительная ширина линии, получаемой при измерении монохроматического g-излучения; количественно она определяется отношением DE/E, где E — энергия вторичной частицы, DE — ширина линии на половине её высоты (в энергетических единицах) (см. Ширина спектральных линий).

В магнитных Гамма-спектрометр вторичные частицы возникают при поглощении g-квантов в т. н. радиаторе; их энергия измеряется так же, как и в магнитном бета-спектрометре (рис. 1).

Рис. 1. Схематическое изображение магнитного гамма-спектрометра. В магнитном поле Н, направленном перпендикулярно плоскости рисунка, вторичные электроны движутся по окружностям, радиусы которых определяются энергией электронов и полем Н. При изменении поля детектор регистрирует электроны разных энергий. Штриховкой показана защита из свинца. Гамма-спектрометр.

Рис. 1. Схематическое изображение магнитного гамма-спектрометра. В магнитном поле Н, направленном перпендикулярно плоскости рисунка, вторичные электроны движутся по окружностям, радиусы которых определяются энергией электронов и полем Н. При изменении поля детектор регистрирует электроны разных энергий. Штриховкой показана защита из свинца.

  Величина магнитного поля Н в спектрометре и радиус r кривизны траектории электронов определяют энергию e электронов, регистрируемых детектором. Если радиатор изготовлен из вещества с малым атомным номером, то вторичные электроны образуются в основном в результате комптон-эффекта, если радиатор изготовлен из тяжёлого вещества (свинец, уран), а энергия g-квантов невелика, то вторичные электроны будут возникать главным образом вследствие фотоэффекта. При энергиях hv³ 1,02 Мэв становится возможным образование гамма-квантами электронно-позитронных пар. На рис. 2 изображен магнитный парный Гамма-спектрометр Образование пар происходит в тонком радиаторе, расположенном в вакуумной камере. Измерение суммарной энергии электрона и позитрона позволяет определить энергию -g-кванта. Магнитные Гамма-спектрометр обладают высокой разрешающей способностью (обычно порядка 1% или долей %), однако эффективность таких Гамма-спектрометр невелика, что приводит к необходимости применять источники g-излучения высокой активности.

Рис. 2. Схематическое изображение парного гамма-спектрометра. В однородном магнитном поле Н, направленном перпендикулярно плоскости чертежа, электроны и позитроны движутся по окружностям в противоположных направлениях. Гамма-спектрометр.

Рис. 2. Схематическое изображение парного гамма-спектрометра. В однородном магнитном поле Н, направленном перпендикулярно плоскости чертежа, электроны и позитроны движутся по окружностям в противоположных направлениях.

  В сцинтилляционных Гамма-спектрометр вторичные электроны возникают при взаимодействии g-квантов со сцинтиллятором (веществом, в котором вторичные электроны возбуждают флюоресценцию). Световая вспышка преобразуется в электрический импульс с помощью фотоэлектронного умножителя (ФЭУ, рис. 3), причём величина сигнала, создаваемого ФЭУ, пропорциональна энергии электрона и, следовательно, связана с энергией g-кванта. Для измерения распределении сигналов по амплитуде используются специальные электронные устройства — амплитудные анализаторы (см. Ядерная электроника).

Рис. 3. Схема сцинтилляционного гамма-спектрометра. Гамма-спектрометр.

Рис. 3. Схема сцинтилляционного гамма-спектрометра.

  Эффективность сцинтилляционного Гамма-спектрометр зависит от размеров сцинтиллятора и при не очень большой энергии может быть близка к 100%. Однако его разрешающая способность невысокая. Для g-квантов с энергией 662 кэвDE/E³ 6% и уменьшается с увеличением энергии E примерно как E-1/2 (подробнее см. Сцинтилляционный спектрометр).

  Действие полупроводниковых Гамма-спектрометр основано на образовании g-излучением в объёме полупроводникового кристалла (обычно Ge с примесью Li) электронно-дырочных пар. Возникающий при этом заряд собирается на электродах и регистрируется в виде электрического сигнала, величина которого определяется энергией g-квантов (рис. 4). Полупроводниковые Гамма-спектрометр обладают весьма высокой разрешающей способностью, что обусловлено малой энергией, расходуемой на образование одной электронно-дырочной пары. Для hv = 662 кэв DE/E~ 0,5%. Эффективность полупроводниковых Гамма-спектрометр обычно ниже, чем сцинтилляционных Гамма-спектрометр, т. к. g-излучение в Ge поглощается слабее, чем, например, в сцинтилляционном кристалле NaJ. Кроме того, размеры используемых полупроводниковых детекторов пока ещё невелики. К недостаткам полупроводниковых Гамма-спектрометр следует отнести также необходимость их охлаждения до температур, близких к температуре жидкого азота (подробнее см. Полупроводниковый спектрометр).

Рис. 4. Схема полупроводникового гамма-спектрометра. Гамма-спектрометр.

Рис. 4. Схема полупроводникового гамма-спектрометра.

  Наивысшую точность измерения энергии g-квантов обеспечивают кристалл-дифракционные Гамма-спектрометр, в которых непосредственно измеряется длина волны g-излучения. Такой Гамма-спектрометр аналогичен приборам для наблюдения дифракции рентгеновских лучей. Излучение, проходя через кристалл кварца или кальцита, отражается плоскостями кристалла в зависимости от его длины волны под тем или иным углом и регистрируется фотоэмульсией или счётчиком фотонов. Недостаток таких Гамма-спектрометр — низкая эффективность.

  Для измерения спектров g-излучения низких энергии (до 100 кэв) нередко применяются пропорциональные счётчики, разрешающая способность которых в области низких энергий значительно выше, чем у сцинтилляционного Гамма-спектрометр При hv > 100 кэв пропорциональные счётчики не используются из-за слишком малой эффективности. Измерение спектра g-излучения очень больших энергий осуществляется с помощью ливневых детекторов, которые измеряют суммарную энергию частиц электронно-позитронного ливня, вызванного g-kвантом высокой энергии. Образование ливня обычно происходит в радиаторе очень больших размеров (которые обеспечивают полное поглощение всех вторичных частиц). Вспышки флюоресценции (или черенковского излучения) регистрируются с помощью ФЭУ (см. Черенковский счётчик).

  В некоторых случаях для измерения энергии g-квантов используется процесс фоторасщепления дейтрона. Если энергия g-кванта превосходит энергию связи дейтрона (~ 2,23 Мэв), то может произойти расщепление дейтрона на протон и нейтрон. Измеряя кинетич. энергии этих частиц, можно определить энергию падающих g-квантов.

 

  Лит.: Альфа-, бетаи гамма-спектроскопия, пер. с англ., под ред. К. Зигбана, в. 1, М., 1969; Методы измерения основных величин ядерной физики, пер. с англ., М., 1964; Калашникова В. И., Козодаев М. С., Детекторы элементарных частиц, М., 1966 (Экспериментальные методы ядерной физики, ч. 1).

  В. П. Парфенова, Н. Н. Делягин.

Так же Вы можете узнать о...


Потенциал покоя (физиологический), разность потенциалов между содержимым клетки (волокна) и внеклеточной жидкостью; скачок потенциала локализуется на поверхностной мембране, при этом её, внутренняя сторона заряжена электроотрицательно по отношению к наружной.
Рирпроекция электронная, способ получения при помощи электронной аппаратуры комбинированного телевизионного изображения, составленного из двух (или более) отдельных изображений, образующих в совокупности законченную в смысловом отношении сцену.
Сильфон (от англ. фирменного назв. Sylphon), тонкостенная металлическая трубка или камера с гофрированной (волнообразной) боковой поверхностью (рис.
Судак, посёлок городского типа в Крымской области УССР.
Трошю Луи Жюль Трошю (Trochu) Луи Жюль (12.3.1815, Ле-Пале, — 7.
Френкель Захарий Григорьевич [13(25).12.1869, Борисполь, ныне Киевской область, — 25.
Чоповичи, посёлок городского типа в Малинском районе Житомирской области УССР.
Юнайтед Пресс Интернэшонал (ЮПИ; United Press International, UPI), одно из крупнейших информационных агентств США.
Ануй (река в Алтайском кр.) Ануй, река в Алтайском крае РСФСР, левый приток Оби.
Бестях, посёлок городского типа в Орджоникидзевском районе Якутской АССР.