Магнит сверхпроводящий

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МАА
МАБ
МАВ
МАГ
МАД
МАЕ
МАЁ
МАЖ
МАЗ
МАИ
МАЙ
МАК
МАЛ
МАМ
МАН
МАО
МАП
МАР
МАС
МАТ
МАУ
МАФ
МАХ
МАЦ
МАЧ
МАШ
МАЭ
МАЮ
МАЯ

Магнит сверхпроводящий,соленоид или электромагнит с обмоткой из сверхпроводящего материала. Обмотка в состоянии сверхпроводимости обладает нулевым омическим сопротивлением. Если такая обмотка замкнута накоротко, то наведённый в ней электрический ток сохраняется практически сколь угодно долго. Магнитное поле незатухающего тока, циркулирующего по обмотке Магнит сверхпроводящий, исключительно стабильно и лишено пульсаций, что важно для ряда приложений в научных исследованиях и технике.

  Обмотка Магнит сверхпроводящий теряет свойство сверхпроводимости при повышении температуры выше критической температуры Тк сверхпроводника, при достижении в обмотке критического токаIk или критического магнитного поляНк. Учитывая это, для обмоток Магнит сверхпроводящий применяют материалы с высокими значениями Тк, Ik и Нк (см. таблицу).

Свойства сверхпроводящих материалов, применяемых для обмоток сверхпроводящих магнитов


Материал

HK при 4,2 K, кэ

Критическая температура TK, K

Критическая плотность тока (а/см2)
в магнитном поле

50 кгс

100 кгс

150 кгс

200 кгс

Сплав ниобий – цирконий
(Nb 50% – Zr 50%)

90

10,5

1·105

0

0

0

Сплав ниобий – титан
(Nb 50% – Ti 50%)

120

9,8

3·105

1·104

0

0

Сплав ниобий – олово (Nb3Sn)

245

18,1

(1,5–2)·106

1·106

(0,7–1)·105

(3–5)·104

Соединение ванадий – галлий (V3Ga)

210

14,5

1·106

(2–3)·105

(1,5–2)·105

(3–5)·104

 

  Для стабилизации тока в обмотке Магнит сверхпроводящий (предотвращения потери сверхпроводимости отдельными её участками) сверхпроводящие обмоточные материалы выпускаются в виде проводов и шин, состоящих из тонких жил сверхпроводника в матрице нормального металла с высокой электрои теплопроводностью (медь или алюминий). Жилы делают не толще нескольких десятков мкм, что снижает тепловыделение в обмотке при проникновении в неё растущего с током магнитного поля. Кроме того, весь проводник при изготовлении скручивают вдоль оси (рис. 1а, 1б), что способствует уменьшению токов, наводящихся в сверхпроводящих жилах и замыкающихся через металл матрицы. Обмоточные материалы из хрупких интерметаллических соединений Nb3Sn и V3Ga выпускают в виде лент из Nb или V толщиной 10—20 мкм со слоями интерметаллида (2—3 мкм) на обеих поверхностях. Такая лента для стабилизации сверхпроводящего тока и упрочнения покрывается тонким слоем меди или нержавеющей стали.

Рис. 1а. Схематическое изображение многожильного сверхпроводящего провода: комбинированный скрученный проводник (1 — сверхпроводящие нити, 2 — матрица). Магнит сверхпроводящий.

Рис. 1а. Схематическое изображение многожильного сверхпроводящего провода: комбинированный скрученный проводник (1 — сверхпроводящие нити, 2 — матрица).

Рис. 1б. Поперечное сечение многожильного комбинированного проводника с 61 нитью (слева) и 1045 нитями (справа) в медной матрице. Магнит сверхпроводящий.

Рис. 1б. Поперечное сечение многожильного комбинированного проводника с 61 нитью (слева) и 1045 нитями (справа) в медной матрице.

  Сравнительно небольшие Магнит сверхпроводящий (с энергией магнитного поля до нескольких сотен кдж) изготавливают с плотно намотанной обмоткой, содержащей 30—50% сверхпроводника в сечении провода. У крупных Магнит сверхпроводящий, с энергией поля в десятки и сотни Мдж, проводники (шины) в своём сечении содержат 5—10% сверхпроводника, а в обмотке предусматриваются каналы, обеспечивающие надёжное охлаждение витков жидким гелием.

  Электромагнитное взаимодействие витков соленоида создаёт механические напряжения в обмотке, которые в случае длинного соленоида с полем ~100 кгс эквивалентны внутреннему давлению ~ 400 am (3,9×107н/м2). Обычно для придания Магнит сверхпроводящий необходимой механической прочности применяют специальные бандажи (рис. 2). В принципе, механические напряжения могут быть значительно снижены такой укладкой витков обмотки, при которой линии тока совпадают с силовыми линиями магнитного поля всей системы в целом (так называемая «бессиловая» конфигурация обмотки).

Рис. 2. Основные элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внешним цепям; 2 — многожильный сверхпроводящий провод в изоляционном покрытии, припаянный к контакту; 3 — рабочий объём соленоида, максимальная напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлический каркас соленоида; 6 — сверхпроводящая обмотка; 7 — силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани. Магнит сверхпроводящий.

Рис. 2. Основные элементы конструкции сверхпроводящего магнита: 1 — контакт для присоединения к внешним цепям; 2 — многожильный сверхпроводящий провод в изоляционном покрытии, припаянный к контакту; 3 — рабочий объём соленоида, максимальная напряжённость поля создаётся в его центре; 4 — текстолитовый диск для монтажа контактов и закрепления соленоида в криостате; 5 — металлический каркас соленоида; 6 — сверхпроводящая обмотка; 7 — силовой бандаж обмотки; 8 — изолирующие прокладки между слоями обмотки из полимерной плёнки или лакоткани.

  При создании в обмотке Магнит сверхпроводящий электрического тока требуемой величины сначала включают нагреватель, расположенный на замыкающем обмотку сверхпроводящем проводе. Нагреватель повышает температуру замыкающего провода выше его Тк, и цепь шунта перестаёт быть сверхпроводящей. Когда ток в соленоиде достигнет требуемой величины, нагреватель выключают. Цепь шунта, охлаждаясь, становится сверхпроводящей, и после снижения тока питания до нуля в обмотке Магнит сверхпроводящий и замыкающем её проводе начинает циркулировать незатухающий ток.

  Работающий Магнит сверхпроводящий находится обычно внутри криостата (рис. 3) с жидким гелием (температура кипящего гелия 4,2 K ниже Тк сверхпроводящих обмоточных материалов). Для предотвращения возможных повреждений сверхпроводящей цепи и экономии жидкого гелия при выделении запасённой в Магнит сверхпроводящий энергии в цепи Магнит сверхпроводящий имеется устройство для вывода энергии на разрядное сопротивление (рис. 4). Предельная напряжённость магнитного поля Магнит сверхпроводящий определяется в конечном счёте свойствами материалов, применяемых для изготовления обмотки магнита (см. таблицу).

Рис. 3. Установка Института атомной энергии им. И. В. Курчатова, в которой испытываются секции сверхпроводящих магнитных систем диаметром около 1 м. В средней части фотографии видна закрепленная на крышке криостата испытываемая секция (С), внизу — цилиндрический криостат (К). Магнит сверхпроводящий.

Рис. 3. Установка Института атомной энергии им. И. В. Курчатова, в которой испытываются секции сверхпроводящих магнитных систем диаметром около 1 м. В средней части фотографии видна закрепленная на крышке криостата испытываемая секция (С), внизу — цилиндрический криостат (К).

Рис. 4. Схематическое изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; 6 — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство. Магнит сверхпроводящий.

Рис. 4. Схематическое изображение включения сверхпроводящего магнита в цепи питания и защиты (разрядки): 1 — дьюар с жидким азотом; 2 — дьюар с жидким гелием; 3 — соленоид; 4 — нагреватель; 5 — источник питания соленоида; 6 — разрядное сопротивление; 7 — реле защиты; 8 — управляющее устройство.

  Современные сверхпроводящие материалы позволяют получать поля до 150—200 кгс. Стоимость крупных Магнит сверхпроводящий с напряжённостью поля порядка десятков кгс в объёме нескольких м3 практически не отличается от затрат на сооружение водоохлаждаемых соленоидов с такими же параметрами, в то время как суммарные затраты электрической энергии на питание Магнит сверхпроводящий и его охлаждение приблизительно в 500 раз меньше, чем для обычных электромагнитов. Для обеспечения работы такого Магнит сверхпроводящий требуется около 100—150 квт, тогда как для эксплуатации аналогичного водоохлаждаемого магнита потребовалась бы мощность ~40—60 Мвт.

Значительное число созданных Магнит сверхпроводящий используется для исследования магнитных, электрических и оптических свойств веществ, в экспериментах по изучению плазмы, атомных ядер и элементарных частиц. Магнит сверхпроводящий получают распространение в технике связи и радиолокации, в качестве индукторов магнитного поля электромашин. Принципиально новые возможности открывает сверхпроводимость в создании Магнит сверхпроводящий — индуктивных накопителей энергии с практически неограниченным временем её хранения.

 

  Лит.: Роуз-Инс А., Родерик Е., Введение в физику сверхпроводимости, пер. с. англ., М., 1972; Зенкевич В. Б., Сычев В. В., Магнитные системы на сверхпроводниках, М., 1972; Кремлёв М. Г., Сверхпроводящие магниты, «Успехи физических наук», 1967, т. 93, в. 4.

  Б. Н. Самойлов.

Так же Вы можете узнать о...


Фавероль, порода кур мясо-яичного направления.
Цитотомия (от цито... и греч. tome) — разрез, рассечение), цитокинез, разделение тела растительной или животной клетки; обычно Ц.
Эстонский театр «Ванемуйне» (по имени бога песни в эстонской мифологии) академический Эстонской ССР, старейший эстонский театр.
Аргентина (страна) Аргентина (Argentina), Аргентинская Республика (Republica Argentina).
Большая Берестовица, посёлок городского типа, центр Берестовицкого района Гродненской области БССР, в 12 км от ж.
Волынский Артемий Петрович [1689 — 27.6(8.7).
Гребёнка резьбовая, многониточный резьбовой резец с 6—8 витками, служит для нарезания наружных и внутренних резьб за один проход на различных деталях (винтах, гайках, шпильках и т.
Есаул (от тюрк. ясаул — начальник), в дореволюционной России должность и чин в казачьих войсках с 1576 (Е.
Каладиум (Caladium), род растений семейства ароидных.
Коноплежатка, прицепная машина для скашивания конопли и укладки скошенной массы на поле.
Ли Куан Ю (р. 16.9.1923, Сингапур), государственный деятель Сингапура.
Мёртвого моря рукописи, находимые с 1947 в пещерах на западном побережье на древнееврейском, арамейском, набатейском, греческом, латинском, сирийско-палестинском и арабском языках.
Новые Гебриды (франц. Nouvelles Hebrides, англ.
Песковка (пос. гор. типа в Киевской обл.) Песковка, посёлок городского типа в Бородянском районе Киевской области УССР, вблизи ж.
Рабеманандзара Жак Рабеманандзара (Rabemananjara) Жак (р. 1913, Таматаве), малагасийский поэт и политический деятель.
Сейсмограмма (от сейсмо... и ...грамма), результат записи сейсмических колебаний посредством сейсмографа.
Строчной развёртки генератор, устройство, предназначенное для осуществления строчной развёртки телевизионного изображения.
Тюкоподборщик-укладчик, машина для подбора тюков сена или соломы, спрессованных пресс-подборщиком, укладки их на накопительной платформе в штабель и транспортировки его к месту скирдования.