Спектральные приборы 2. Многоканальные С. п. с пространственным разделением длин волн

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
СI СА СБ СВ СГ СД СЕ СЁ СЖ СИ СК СЛ СМ СН СО СП СР СС СТ СУ СФ СХ СЦ СЧ СШ СЪ СЫ СЬ СЭ СЮ СЯ
СПА
СПЕ
СПЁ
СПИ
СПЛ
СПО
СПР
СПУ
СПЯ

2. Многоканальные Спектральные приборы с пространственным разделением длин волн

Сканирование в этой группе приборов не применяется, дискретный ряд длин волн (в полихроматорах) или участки непрерывного спектра (в спектрографах) регистрируются одновременно, и оптическая часть строится обычно по схеме, приведённой на рис. 3. Если же вместо системы, создающей угловую дисперсию, применяется набор узкополосных светофильтров, прибор обычно относят к фотометрам.

Многоканальные Спектральные приборы широко используются для спектрального анализа состава веществ по выбранным аналитическим длинам волн l. По мере увеличения числа каналов появляется возможность изучения спектральных распределений f(l). Рассмотрим наиболее типичные приборы данной группы (в порядке возрастания числа каналов).

Пламенные (атомно-абсорбционные) спектрофотометры имеют обычно один-два канала регистрации. Они измеряют интенсивности линий абсорбции (эмиссии, флуоресценции) атомов элементов в пламени специальных горелок или других «атомизаторов». В простых конструкциях аналитические l выделяются узкополосными фильтрами (пламенные фотометры), в приборах более высокого класса применяются полихроматоры или монохроматоры, которые можно переключать на различные длины волн. Приборы данного типа используют в спектральном анализе для определения большинства элементов периодической системы. Они обеспечивают высокую избирательность и чувствительность до 10-14 г.

Квантометры — фотоэлектрические установки для промышленного спектрального анализа (рис. 7). Они строятся на основе полихроматоров; выходные щели полихроматора выделяют из спектра излучения исследуемого вещества аналитические линии и линии сравнения, соответствующие потоки посылаются на приёмники (фотоумножители), установленные у каждой щели. Фототоки приёмников заряжают накопительные конденсаторы; величины их зарядов, накопленные за время экспозиции, служат мерой интенсивностей линий, которые пропорциональны концентрациям элементов в пробе. Существующие модели квантометров различаются рабочими диапазонами спектра (внутри области 0,17—1 мкм), числом одновременно работающих каналов (от 2 до 80), степенью автоматизации, способами возбуждения спектров (дуга, искра, лазер). Они применяются для экспрессного анализа химического состава сталей и сплавов в чёрной и цветной металлургии, металлических примесей в отработанных смазочных маслах машин и двигателей для определения степени их износа и в др. задачах.

Рис. 7. Вакуумный 24-канальный квантометр (заводское название — фотоэлектрическая установка) ДФС-41 для экспрессного и маркировочного анализа чугунов, простых и среднелегированных сталей на легирующие элементы, металлоиды и вредные примеси, аналитические линии которых расположены в вакуумной УФ-области: 1 — вакуумный полихроматор с вогнутой дифракционной решёткой с фокусным расстоянием, равным 1 м, рабочий диапазон 0,175—0,38 мкм; 2 — генератор искры ИВС-1 для возбуждения эмиссионных линий атомов в пробе; 3 — электронно-регистрирующее устройство ЭРУ-1; 4 — блок цифрового отсчёта. Время анализа 10 элементов около 2 мин. Спектральные приборы.

Рис. 7. Вакуумный 24-канальный квантометр (заводское название — фотоэлектрическая установка) ДФС-41 для экспрессного и маркировочного анализа чугунов, простых и среднелегированных сталей на легирующие элементы, металлоиды и вредные примеси, аналитические линии которых расположены в вакуумной УФ-области: 1 — вакуумный полихроматор с вогнутой дифракционной решёткой с фокусным расстоянием, равным 1 м, рабочий диапазон 0,175—0,38 мкм; 2 — генератор искры ИВС-1 для возбуждения эмиссионных линий атомов в пробе; 3 — электронно-регистрирующее устройство ЭРУ-1; 4 — блок цифрового отсчёта. Время анализа 10 элементов около 2 мин.

Спектрографы одновременно регистрируют протяжённые участки спектра, развёрнутого в фокальной плоскости Ф (рис. 3) на фотопластинках или фотоплёнках (фотографические спектрографы), а также на экранах передающих телевизионных трубок, электронно-оптических преобразователей с «запоминанием» изображений и т. п. При хорошей оптике число каналов ограничивается лишь разрешающей способностью (зернистостью) фотоматериалов или числом строк телевизионной развёртки. В видимой области спектра для визуальных методов спектрального анализа широко используются простые спектроскопы и стилоскопы, в которых приёмником является глаз.

  Диапазон длин волн, в котором работают спектрографы, простирается от коротковолновой границы оптического диапазона и постепенно расширяется в ИК-область по мере достижения всё более высокой фоточувствительности слоев и развития методов тепловидения. Типы спектрографов отличаются большим разнообразием — от простейших приборов настольного типа для учебных целей и компактных ракетных и спутниковых бортовых приборов для исследования спектров Солнца, звёзд, планет, туманностей до крупных астроспектрографов, работающих в сочетании с телескопами, и лабораторных 10-метровых вакуумных установок с большими плоскими и вогнутыми дифракционными решётками для исследований тонкой структуры спектров атомов. Линейная дисперсия спектрографов (участок фокальной плоскости Dх, занимаемый интервалом длин волн Dl) может лежать в пределах от 102 до 105мм/мкм, светосила по освещённости (отношение освещённости в изображении входной щели к яркости источника, освещающего входную щель) — от » 0,5 в светосильных спектрографах до 10-3 и менее в длиннофокусных приборах большой дисперсии.

Скоростные многоканальные Спектральные приборы для исследований спектров быстропротекающих процессов конструируются путём сочетания спектрографа со скоростной кинокамерой (киноспектрографы), введения в схему прибора многогранных вращающихся зеркал для развёртки спектров перпендикулярно направлению дисперсии, применения многоканальной регистрации с многоэлементными приёмниками и т. п. В этой области ещё нет установившейся терминологии; такие Спектральные приборы называются хроноспектрографами, спектрохронографами, спектровизорами, скоростными спектрометрами.

Спектральные приборы, приборы для исследования спектрального состава по длинам волн электромагнитных излучений в оптическом диапазоне (10-3—103мкм; см. Спектры оптические), нахождения спектральных характеристик излучателей и объектов, взаимодействовавших с излучением, а также для спектрального анализа. С. п. различаются методами спектрометрии, приёмниками излучения, исследуемым (рабочим) диапазоном длин волн и др. характеристиками.

  Принцип действия большинства С. п. можно пояснить с помощью имитатора, изображенного на рис. 1. Форма отверстия в равномерно освещенном экране 1 соответствует функции f(l), описывающей исследуемый спектр — распределение энергии излучения по длинам волн l. Отверстие в экране 2 соответствует функции а(ll'), описывающей способность С. п. выделять из светового потока узкие участки dl в окрестности каждой l. Эту важнейшую характеристику С. п. называют функцией пропускания, или аппаратной функцией (АФ). Процесс измерения спектра f(l) прибором с АФ а(ll’) можно имитировать, регистрируя изменения светового потока, проходящего через отверстие, при перемещении (сканировании) экрана 2 относительно экрана 1. Очевидно, чем меньше ширина АФ, тем точнее будет измерена форма контура спектра f(l), тем более тонкая структура может быть в нём обнаружена.

Рис. 1. Результат измерений <i>F</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span>) исследуемого спектра <i>f</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span>) прибором с аппаратной функцией <i>а</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span><span style='layout-grid-mode:line'>—</span><span style='font-family:Symbol;layout-grid-mode:line'>l</span>') описывается интегралом, называемым свёрткой функции <i>f</i> с функцией <i>а</i>. Процесс свёртки можно имитировать изменением площади отверстия при относительном перемещении (сканировании) экранов 1 и 2. Чем меньше ширина <span style='font-family:Symbol;layout-grid-mode:line'>dl</span> функции <i>а</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span><span style='layout-grid-mode:line'>—</span><span style='font-family:Symbol;layout-grid-mode:line'>l</span>'), тем точнее прибор передаёт истинный контур <i>f</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span>). Тождество <i>F</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span>)<span style='font-family:Symbol;layout-grid-mode:line'>º</span><i>f</i>(<span style='font-family:Symbol;layout-grid-mode:line'>l</span>) достигается лишь при бесконечно узкой аппаратной функции (<span style='font-family:Symbol;layout-grid-mode:line'>dl®</span>0). Спектральные приборы.

Рис. 1. Результат измерений F(l) исследуемого спектра f(l) прибором с аппаратной функцией а(ll') описывается интегралом, называемым свёрткой функции f с функцией а. Процесс свёртки можно имитировать изменением площади отверстия при относительном перемещении (сканировании) экранов 1 и 2. Чем меньше ширина dl функции а(ll'), тем точнее прибор передаёт истинный контур f(l). Тождество F(l)ºf(l) достигается лишь при бесконечно узкой аппаратной функции (dl®0).

  Ширина АФ наряду с рабочим диапазоном l является основной характеристикой С. п.; она определяет спектральное разрешение dl и спектральную разрешающую способность R =l/dl. Чем шире АФ, тем хуже разрешение (и меньше R), но больше поток излучения, пропускаемый прибором, т. е. больше оптический сигнал и М — отношение сигнала к шуму. Шумы (случайные помехи), неизбежные в любых измерительных устройствах, в общем случае пропорциональны  (Dfполоса пропускания приёмного устройства). Чем шире Df, тем выше быстродействие прибора и меньше время измерения, но больше шумы (меньше M). Взаимосвязь величин R, М, (f определяется соотношением:

  . (1)

  Показатели степени a и b принимают различные положительные значения в зависимости от конкретного типа С. п. Константа К, зависящая только от l, определяется конструктивными параметрами данного типа С. п. и накладывает ограничения на величины R, М,Df. Кроме того, возможные значения R ограничиваются дифракцией света, аберрациями оптических систем, а значения Df — инерционностью приёмно-регистрирующей части С. п.

  Рассмотренный с помощью рис. 1 принцип действия С. п. относится к одноканальным методам спектрометрии. Наряду с ними широко распространены многоканальные методы, в которых сканирование не применяется и излучения различных l регистрируются одновременно. Это соответствует наложению на экран 1 неподвижного экрана с вырезанными N контурами АФ для разных l при независимой регистрации потоков от каждого отверстия (канала).

  Общая классификация методов спектрометрии, являющихся основой различных схем и конструкций С. п., представлена на рис. 2. Классификация дана по двум основным признакам — числу каналов и физическим методам выделения l в пространстве или времени. Исторически первыми и наиболее распространёнными являются методы пространственного разделения l (селективной фильтрации), которые называются «классическими» (группы 1 и 2 на рис. 2). В одноканальных С. п. (группа 1) исследуемый поток со спектром f(() посылается на спектрально-селективный фильтр, который выделяет из потока некоторые интервалы dl в окрестности каждой l‘ и может перестраиваться (непрерывно или дискретно), осуществляя сканирование спектра во времени по некоторому закону l’(t) . Выделенные компоненты dl посылаются на приёмник излучения, запись сигналов которого даёт функцию времени F(t). Переход от аргумента t к аргументу l даёт функцию F(l) наблюдаемый спектр.

Рис. 2. Классификация методов спектрометрии по способам разделения длин волн. Контуры шириной <span style='font-family:Symbol;layout-grid-mode:line'>dl</span> символически изображают аппаратные функции (АФ). В «классических» методах (1 и 2) эти контуры описывают способность прибора пространственно разделять длины волн. В «новых» методах (3 и 4) АФ описывают способность прибора электрически разделять длины волн, кодированные различным образом в оптической части. В одноканальных методах (1 и 3) применяется сканирование (символ <span style='font-family:Symbol;layout-grid-mode:line'>®</span>), в многоканальных (2 и 4 ) сканирование отсутствует, и измерение интенсивностей излучения ряда длин волн <span style='font-family:Symbol;layout-grid-mode:line'>l</span>', <span style='font-family:Symbol;layout-grid-mode:line'>l</span>'',<span style='layout-grid-mode:line'></span><span style='font-family:Symbol;layout-grid-mode:line'>l</span>''',... производится одновременно. Внутри каждой группы указаны краткие названия основных типов спектральных приборов, относящихся к данной группе. Спектральные приборы.

Рис. 2. Классификация методов спектрометрии по способам разделения длин волн. Контуры шириной dl символически изображают аппаратные функции (АФ). В «классических» методах (1 и 2) эти контуры описывают способность прибора пространственно разделять длины волн. В «новых» методах (3 и 4) АФ описывают способность прибора электрически разделять длины волн, кодированные различным образом в оптической части. В одноканальных методах (1 и 3) применяется сканирование (символ ®), в многоканальных (2 и 4 ) сканирование отсутствует, и измерение интенсивностей излучения ряда длин волн l', l'',l''',... производится одновременно. Внутри каждой группы указаны краткие названия основных типов спектральных приборов, относящихся к данной группе.

  В многоканальных С. п. (группа 2) информация об исследуемом спектре получается путём одновременной регистрации (без сканирования по l) несколлькими приёмниками потоков излучения разных длин волн (l’, l’’, l’’’, ...). Последние выделяют, например, набором узкополосных фильтров или многощелевыми монохроматорами (полихроматорами). Если расстояние между каналами не превышает dl и число каналов N достаточно велико, то получаемая информация аналогична содержащейся в записи спектра на сканирующем одноканальном приборе (при тех же dl, одинаковых приёмниках и пр. равных условиях), но время измерения может быть сокращено в N раз. Наибольшая многоканальность достигается применением многоэлементных фотоэлектрич. приёмников излучения и фотографических материалов (в спектрографах).

  Принципиальной основой «новых» методов (группы 3 и 4 на рис. 2), получивших развитие с середины 60-х гг., является селективная модуляция, при которой функция разделения l переносится из оптической в электрическую часть прибора.

  В простейшем одноканальном приборе группы 3 исследуемый поток со спектром f(l) посылается на спектрально-селективный модулятор, способный модулировать некоторой частотой fo = const лишь интервал dl в окрестности l, оставляя остальной поток немодулированным. Сканирование l’(t) производится перестройкой модулятора таким образом, чтобы различные l последовательно модулировались частотой fо. Выделяя составляющую fо в сигнале приёмника с помощью электрического фильтра, получают функцию времени F(t), значения которой пропорциональны соответствующим интенсивностям в спектре f(l).

  Многоканальные системы с селективной модуляцией (группа 4) основаны на операции мультиплексирования (multiplexing) — одновременном приёме излучения от многих спектральных элементов dl в кодированной форме одним приёмником. Это обеспечивается тем, что длины волн l‘, l‘’, l‘’’,... одновременно модулируются разными частотами f’, f’’, f’’’,... и суперпозиция соответствующих потоков в приёмнике излучения даёт сложный сигнал, частотный спектр которого по f несёт информацию об исследуемом спектре по l. При небольшом числе каналов компоненты f’, f’’, f’’’,... выделяются из сигнала с помощью электрических фильтров. По мере увеличения числа каналов гармонический анализ сигнала усложняется. В предельном случае интерференционной модуляции искомый спектр f(l) можно получить Фурье-преобразованием регистрируемой интерферограммы (см. Фурье-спектроскопия). Среди др. возможных способов многоканального кодирования получили практическое применение маски-матрицы Адамара (см. ниже).

  За рамками классификации, приведённой на рис. 2, остаются лишь методы, использующие почти монохроматическое излучение перестраиваемых лазеров (см. Спектроскопия лазерная).

Все рассмотренные группы методов спектрометрии нашли практическое воплощение в конструкциях С. п., но относительная распространённость их различна. Например, спектрометры сисам, относящиеся к группе 3, осуществлены лишь в нескольких лабораторных экспериментальных установках, а классические приборы на основе монохроматоров получили повсеместное распространение как основное средство анализа структуры и состава веществ. Рассмотрим наиболее распространённые типы С. п., следуя приведённой классификации.

1. Одноканальные С. п. с пространственным разделением длин волн
2. Многоканальные С. п. с пространственным разделением длин волн
3. Одноканальные С. п. с селективной модуляцией
4. Многоканальные С. п. с селективной модуляцией
Так же Вы можете узнать о...


Худяков Сергей Александрович [25.12.1901 (7.
Бутков Пётр Григорьевич [17(28).12.1775, Слобода-Осиново, ныне Старобельский район Ворошиловградской области, — 12(24).
Иогансен Вильгельм Людвиг Иогансен (Johannsen) Вильгельм Людвиг (3.2.1857, Копенгаген, — 11.
Мозаичные болезни растений, группа вирусных болезней растений, характеризующихся мозаичной (пёстрой) расцветкой пораженных органов (главным образом листьев и плодов), чередованием пятен разнообразной величины и формы, окрашенных в зелёный цвет различной интенсивности.
Сабейское царство, древнее государство в Южной Аравии; см.
Хросвита Роевита Хросвита, Гротсвита, Роевита (Hroswitha, Hrotsvitha, Roswitha) (около 935 — около 975), немецкая писательница.
Бурундай, посёлок городского типа в Илийском районе Алма-Атинской области Казахской ССР.
Инфлянты (Inflanty), польское название Ливонии (Лифляндии), которая в 1561—1629 почти целиком находилась под властью Речи Посполитой.
Могзин, посёлок городского типа в Читинском районе Читинской обл.
Рютбёф (Rutebeuf) (около 1230, Шампань, — 1285, Париж), французский поэт и драматург.
Христианско-демократический союз в ФРГ (ХДС; Christlich-Demokratische Union, CDU), крупнейшая буржуазная политическая партия ФРГ.
Бургкмайр Ханс Старший Бургкмайр (Burgkmair) Ханс Старший (1473, Аугсбург, — 1531, там же), немецкий живописец и график эпохи Возрождения, глава аугсбургской школы.
Интернационал 3-й
Мнимое изображение предмета (воспринимается глазом как предмет) образуется пересечениями геометрических продолжений световых лучей, прошедших через оптическую систему, в направлениях, обратных действительному ходу этих лучей.
Рыбопропускные сооружения, сооружения в составе гидроузлов, предназначенные для пропуска рыбы из нижнего бьефа в верхний, главным образом в период её нерестовой миграции.
Хосои Вакидзо (9.5.1897, Кая, близ Ёсы, префектура Киото, — 18.
Булль Эдвард Булль (Bull) Эдвард [4.12.1881, Христиания (Осло), — 26.
Институты благородных девиц, закрытые учебно-воспитательные заведения в дореволюционной России для дочерей дворян.
Михаэлиса константа, один из важнейших параметров кинетики ферментативных реакций, введённый немецкими учёными Л.