Магнитная структура

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МАА
МАБ
МАВ
МАГ
МАД
МАЕ
МАЁ
МАЖ
МАЗ
МАИ
МАЙ
МАК
МАЛ
МАМ
МАН
МАО
МАП
МАР
МАС
МАТ
МАУ
МАФ
МАХ
МАЦ
МАЧ
МАШ
МАЭ
МАЮ
МАЯ

Магнитная структура атомная, периодическое пространственное расположение и ориентация атомных магнитных моментов в магнитоупорядоченном кристалле (ферро-, ферриили антиферромагнетике). Атомную Магнитная структура следует отличать от доменной магнитной структуры, определяемой характером и взаимным расположением доменов. Периодичность расположения атомных магнитных моментов в пространстве определяется кристаллической структурой вещества. За взаимную ориентацию моментов ответственно обменное взаимодействие электрич. природы, за их общую ориентацию относительно кристаллографических осей — силы магнитной анизотропии. Более сложные (и слабые) типы магнитного взаимодействия могут усложнять атомную Магнитная структура (см. Метамагнетик).

Различают два основных класса магнитных веществ, связанных с определённой атомной Магнитная структура: вещества с ненулевым суммарным макроскопическим магнитным моментом М (М ¹ 0) и вещества с М = 0. Первому случаю соответствует ферромагнитная Магнитная структура (рис. 1, а): магнитные моменты всех атомов выстраиваются вдоль одного направления (оси лёгкого намагничивания), которое может быть различным у разных кристаллов. Второму случаю соответствует антиферромагнитная Магнитная структура (рис. 1, б): у каждого магнитного момента в ближайшем окружении имеется компенсирующий момент, ориентированный строго антипараллельно. В зависимости от характера ближайшего окружения могут осуществляться различные антиферромагнитные Магнитная структура (например, структуры, показанные на рис. 1, б, в и г). Антиферромагнитные Магнитная структура могут иметь периоды большие, чем периоды атомной структуры, в целое число раз. Иногда осуществляются антиферромагнитные Магнитная структура с ориентацией магнитных моментов вдоль двух или трёх осей и ещё более сложные — зонтичные, треугольные и другие (рис. 1, д, е).

Близки к антиферромагнитной Магнитная структура ферримагнитные структуры с М ¹ 0. Они имеют место, когда антиферромагнитная Магнитная структура образуется атомами или ионами с разными по величине магнитными моментами (рис. 1, ж). При этом значение М определяется величиной разности моментов двух магнитных подрешёток (систем одинаково ориентированных магнитных моментов). Другой случай осуществляется в слабых ферромагнетиках: наличие дополнительных сил межатомного воздействия приводит к неколлинеарности магнитных моментов и появлению суммарной ферромагнитной составляющей (рис. 1, з). См. Слабый ферромагнетизм.

Более сложный (дальнодействующий) характер межатомного взаимодействия в некоторых случаях приводит к установлению геликоидальных Магнитная структура В последних магнитные моменты соседних атомов повёрнуты друг относительно друга так, что концы изображающих их векторов лежат на одной спиральной линии. В зависимости от величины проекции магнитных моментов на направление оси спирали различают несколько видов геликоидальных Магнитная структура (рис. 2). Существенное отличие геликоидальных Магнитная структура от остальных Магнитная структура заключается в том, что в общем случае шаг спирали несоизмерим с соответствующим периодом кристаллической решётки и, кроме того, зависит от температуры.

  Полная классификация Магнитная структура основывается на теории магнитной симметрии, учитывающей не только расположение, но и ориентацию атомных магнитных моментов в кристалле. В число преобразований магнитной симметрии, кроме обычных поворотов вокруг осей симметрии, отражения в плоскостях симметрии и трансляций, дополнительно входит преобразование R, изменяющее направления магнитных моментов на противоположные. Введение преобразования R увеличивает число классов симметрии с 32 до 122, а число пространственных групп симметрии — с 230 до 1651. Вещества, обладающие Магнитная структура, описываются теми группами магнитной симметрии, в которые R входит в виде произведений с обычными элементами симметрии кристаллов.

Магнитная структура кристалла и его физические (в первую очередь магнитные) свойства тесно взаимосвязаны. Поэтому косвенные суждения о Магнитная структура могут быть высказаны на основе данных об этих физических свойствах вещества. Прямые данные о Магнитная структура кристаллов позволяет получить магнитная нейтронография. Со времени первой работы в этой области (1949) нейтронографически установлена Магнитная структура более тысячи различных металлов, сплавов и химических соединений. Для установления Магнитная структура может быть использован также ядерный гамма-резонанс (Мёссбауэра эффект).

 

  Лит.: Изюмов Ю. А., Озеров Р. П., Магнитная нейтронография. М., 1966: Вонсовский С. В., Магнетизм, М., 1971: Копцик В. А., Шубниковские группы, М., 1966.

  Р. П. Озеров.

Рис. 1. Типы магнитных структур: а — ферромагнитная, периоды атомной а и магнитной а<sub>м</sub> элементарных ячеек совпадают; б, в и г — антиферромагнитные структуры, а<sub>м</sub> в некоторых направлениях в два раза больше а; д — треугольная; е — зонтичная; ж — ферромагнитная; з — слабоферромагнитная, угол склонения на рисунке сильно увеличен. Магнитная структура.

Рис. 1. Типы магнитных структур: а — ферромагнитная, периоды атомной а и магнитной ам элементарных ячеек совпадают; б, в и г — антиферромагнитные структуры, ам в некоторых направлениях в два раза больше а; д — треугольная; е — зонтичная; ж — ферромагнитная; з — слабоферромагнитная, угол склонения на рисунке сильно увеличен.

Рис. 2. Примеры спиральных магнитных структур (<span style='font-family:Symbol;layout-grid-mode:line'>l</span> — период спирали): слева — простая спираль с нулевым значением проекции магнитного момента на ось спирали; справа — ферромагнитная (коническая) спираль с постоянным значением проекции магнитного момента на ось спирали. Магнитная структура.

Рис. 2. Примеры спиральных магнитных структур (l — период спирали): слева — простая спираль с нулевым значением проекции магнитного момента на ось спирали; справа — ферромагнитная (коническая) спираль с постоянным значением проекции магнитного момента на ось спирали.

Так же Вы можете узнать о...


«Атомная дипломатия», термин, обозначающий внешнеполитический курс США после окончания 2-й мировой войны, в основе которого лежало стремление америкаснких правящих кругов использовать созданный США арсенал ядерного оружия в качестве средства политического шантажа и давления на другие страны.
Барадла-Домица (Baradla-Domica), пещера в Венгрии и Чехословакии, см.
Березиль «», украинский театр. Открылся в 1922 в Киеве.
Боковая рефракция, см. Рефракция.
Буденц Йожеф Буденц (Budenz) Йожеф (13.6.1836, Расдорф, близ Фульды, — 15.
Варна (город в Болгарии) Варна, город и крупный порт в Болгарии, в глубине Варненского залива Чёрного моря.
Визуальная звёздная величина, см. Звёздная величина.
Вольвоксовые (Volvocophyceae), класс одноклеточных или колониальных, подвижных в вегетативном состоянии зелёных водорослей.
Газотурбинное топливо, углеводородные газы или жидкое нефтяное топливо, используемые в газовых турбинах.
Геометрическая прогрессия, последовательность чисел (a1, a2,¼, an¼), из которых каждое равно предыдущему, умноженному на постоянное для данной прогрессии число q (знаменатель Г.