Максимального правдоподобия методБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Максимального правдоподобия метод, метод нахождения статистических оценок неизвестных параметров распределения; согласно Максимального правдоподобия метод, в качестве оценок выбираются те значения параметров, при которых данные результаты наблюдений «наиболее вероятны». Предполагается, что результаты наблюдений X1, ..., Xn являются взаимно независимыми случайными величинами с одним и тем же распределением вероятностей, зависящим от одного неизвестного параметра qÎQ, где Q — множество допустимых значений q. Для придания точного смысла принципу «наибольшей вероятности» поступают следующим образом. Вводят функцию где p(t; q) в случае непрерывного распределения интерпретируется как плотность вероятности случайной величины X, а в дискретном случае — как вероятность того, что случайная величина Х примет значение t. Функцию L(X1, . . ., Xn; q) от случайных величин X1, . . ., Xn называют функцией правдоподобия, а оценкой максимального правдоподобия параметра q называют такое значение Максимального правдоподобия метод не всегда приводит к приемлемым результатам, однако в достаточно широком круге практически важных случаев этот метод является в известном смысле наилучшим. Так, например, можно утверждать, что если для параметра q существует несмещенная эффективная оценка q* по выборке объёма n, то уравнение правдоподобия имеет единств, решение
Лит.: Крамер Г., Математические методы статистики, перевод с английского, М., 1948; Рао С. Р., Линейные статистические методы и их применения, перевод с английского, М., 1968; Худсон Д., Статистика для физиков, перевод с английского, М., 1970. А. В. Прохоров. |
||||||||||||||||||||||||||||||||||||||||||||||
|