Статистическое оцениваниеБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Статистическое оценивание, совокупность способов, употребляемых в математической статистике для приближённого определения неизвестных распределений вероятностей (или каких-либо их характеристик) по результатам наблюдений. В наиболее распространённом случае независимых наблюдений их результаты образуют последовательность X1, X2,..., Xn,... (1) независимых случайных величин (или векторов), имеющих одно и то же (неизвестное) распределение вероятностей с функцией распределения F (x). Часто предполагают, что функция F (x) зависит неизвестным образом от одного или нескольких параметров и определению подлежат лишь значения самих этих параметров [например, значительная часть теории, особенно в многомерном случае, развита в предположении, что неизвестное распределение является нормальным распределением, у которого все параметры или какая-либо часть их неизвестны (см. Статистический анализ многомерный)]. Два основных вида Статистическое оценивание — т. н. точечное оценивание и оценивание с помощью доверительных границ. В первом случае в качестве приближённого значения для неизвестной характеристики выбирают какую-либо одну функцию от результатов наблюдений, во втором — указывают интервал значений, с высокой вероятностью «накрывающий» неизвестное значение этой характеристики. В более общих случаях интервалы, образуемые доверительными границами (доверительные интервалы), заменяются более сложными доверительными множествами. О Статистическое оценивание функции распределения F (x) см. Непараметрические методы в математической статистике; о Статистическое оценивание параметров см. Статистические оценки. Разработаны также методы Статистическое оценивание и для случая, когда результаты наблюдений (1) зависимы, и для случая, когда индекс n заменяется непрерывно меняющимся аргументом t, т. е. для случайных процессов. В частности, широко используется Статистическое оценивание таких характеристик случайных процессов, как корреляционная функция и спектральная функция. В связи с задачами регрессионного анализа был развит новый метод Статистическое оценивание — стохастическая аппроксимация. При классификации и сравнении способов Статистическое оценивание исходят из ряда принципов (таких, как состоятельность, несмещенность, инвариантность и др.), которые в их наиболее общей форме рассматривают в Статистических решений теории.
Лит.: Крамер Г., Математические методы статистики, пер. с англ., 2 изд., М., 1975; Рао С. Р., Линейные статистические методы и их применения, пер. с англ., М., 1968.
|
||||||||||||||||||||||||||||||||||||||||||||||
|