Ускорения заряженных частиц коллективные методы. 3. Ускорение ионов электронными кольцами

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
УА УБ УВ УГ УД УЕ УЖ УЗ УИ УЙ УК УЛ УМ УН УО УП УР УС УТ УФ УХ УЦ УЧ УШ УЩ УЭ УЮ УЯ
УСА
УСВ
УСЕ
УСИ
УСК
УСЛ
УСМ
УСО
УСП
УСС
УСТ
УСУ
УСЫ
УСЬ
УСЯ

3. Ускорение ионов электронными кольцами

При этом способе ускорения создаётся устойчивый электронный сгусток, в который вводятся положительно заряженные ионы. Электрическое поле электронного сгустка прочно удерживает ионы. При ускорении сгустка внешним полем ионы также ускоряются вместе со сгустком. Конечная энергия ионов во столько раз больше энергии электронов того же сгустка, во сколько раз масса иона больше массы электрона; если ускоряются протоны, то это отношение равно 1836. Данный метод имеет наибольшее практическое значение. Рассмотрим конкретную схему создания устойчивого сгустка электронов.

Физические основы создания устойчивого сгустка. Чтобы добиться устойчивости сгустка электронов, необходимо скомпенсировать силы кулоновского отталкивания электронов в сгустке. Это можно сделать добавлением в сгусток необходимого числа положительно заряженных ионов. Однако число ионов должно быть небольшим, чтобы масса сгустка существенно не менялась (т.к. ускорение зависит от отношения заряда к массе). Такие противоречивые требования выполняются лишь для движущихся электронов. Действительно, на электроны сгустка действуют кулоновские силы расталкивания, что приводит к разлёту сгустка. Но если сгусток движется, то, кроме кулоновских сил, появляются магнитные силы, связанные с движением зарядов и направленные противоположно силам расталкивания. Чем выше скорость движения электронов, тем больше магнитные силы. Для электронов с энергией движения, например, в 10 Мэв результирующая сила расталкивания уменьшается в 400 раз по сравнению с силой для покоящихся электронов. В этом случае достаточно в электронный сгусток ввести малое число ионов (1/400 от числа электронов), чтобы полностью скомпенсировать кулоновское отталкивание. Для последующего ускорения такого образования во внешнем поле сгусток формируется в виде кольца движущихся электронов. Внутри сечения такого кольца (тора) расположены практически покоящиеся ионы. Кольцо используется для ускорения ионов. Сила, действующая на каждый ион кольца при движении его во внешнем поле, прямо пропорциональна числу электронов в кольце и обратно пропорциональна сечению кольца. Эти параметры и определяют эффективность ускорения в данном методе.

Схема ускорителя с электронными кольцами. Сгусток электронов формируется следующим образом. Пучок электронов от линейного ускорителя вводится (инжектируется) в магнитное поле, такое же, как у ускорителя со слабой фокусировкой, и образует кольцо большого диаметра. Начальный размер кольца выбирается из условия удержания в поле нужного числа электронов. Затем магнитное поле нарастает и в соответствии с ростом поля все размеры кольца уменьшаются. Этот процесс продолжается вплоть до получения кольцевого сгустка требуемых параметров. В конечном состоянии сжатия при помощи газового клапана в область кольца впрыскивается необходимое количество газа. Электроны ионизуют газ, и образующиеся ионы захватываются электронным сгустком. Число захваченных ионов регулируется изменением давления впускаемой порции нейтрального газа. После этого меняется конфигурация магнитного поля, удерживающего электроны, и кольцо вместе с ионами начинает двигаться с ускорением вдоль своей оси в направлении спада магнитного поля (за счёт трансформации энергии вращения электронов в энергию поступательного движения кольца). Дальнейшее ускорение кольца производится внешним электрическим полем (см. рис.); при этом необходима ускоряющая система со значительным энергетическим запасом, например система высокочастотных резонаторов.

  Эксперименты, проведённые на макетах таких ускорителей в Объединённом институте ядерных исследований (СССР, г. Дубна), позволили получить эффективность ускорения в десятки Мэв/м. Во многих странах ведутся работы по изучению возможностей получения в коллективных методах ускорения эффективностей в сотни Мэв/м.

 

  Лит.: Veksler V. I., Coherent principle of acceleration of charged particles, «Proceedings CERN symposium on high energy acceierators and pion physics», v. I, Gen., 1956, p. 80–83; Плютто А. А. и др., Ускорение ионов в электронном пучке, «Атомная энергия», 1969, т. 27, в. 5, с. 418; Файнберг Я. Б., Ускорение частиц в плазме, «Атомная энергия», 1959, т. 6, в. 4, с. 431–46; Veksler V. I. et al., Linear collective acceleration of ions, «Proceedings of the sixth International conference on high energy accelerators», Gamb., 1967, p. 289.

  В. П. Саранцев.

 

Ускорения заряженных частиц коллективные методы. Ускорение заряженных частиц в современных ускорителях происходит благодаря взаимодействию заряда частицы с внешним электромагнитным полем (см. Ускорители заряженных частиц). Эффективность ускорения, т. е. средняя энергия, сообщаемая частице электрическим полем на единице длины ускоряющего устройства, определяется напряжённостью электрического и магнитного полей и ограничена техническими возможностями устройств, создающих эти поля. Для разных типов ускорителей эффективность ускорения колеблется от 1 до 50 Мэв на 1 м длины системы. В 1960-х гг. возникло новое направление в физике ускорителей – т. н. когерентные методы ускорения, которые в принципе позволяли обойти трудности «классических» ускорителей. Основателем этого направления был В. И. Векслер. Главная задача когерентных методов ускорения – получение больших эффективностей ускорения. Их характерная особенность состоит в том, что электромагнитное поле, ускоряющее частицы, не является внешним, а возникает в результате взаимодействия группы ускоряемых частиц с др. группой зарядов, плазмой или электромагнитным излучением при условии его когерентного (синхронного) воздействия на всю ускоряемую группу частиц. Такой синхронизм обычно возникает автоматически. Величина ускоряющего поля зависит от числа участвующих в таком взаимодействии частиц и может достигать больших значений – 100 Мв/м и более. Однако реализации этих методов мешают возникающие плазменные и гидродинамические неустойчивости и поэтому в настоящее время когерентное ускорение не имеет практического значения для ускорения частиц. Если ускоряемые частицы не участвуют в создании ускоряющих полей, но последние создаются не с помощью электродов, как в «классических» ускорителях, а с помощью потоков, сгустков или колец заряженных частиц, то говорят о коллективных методах ускорения. К 1976 существует около 20 различных схем коллективного ускорения частиц. Во всех таких ускорителях, в отличие от плазменных ускорителей, в создании ускоряющего поля участвуют релятивистские электроны.

Движение кольцевого сгустка из электронов и положительно заряженных ионов во внешнем поле Е<sub>внешн</sub> в коллективном ускорителе. Ионы под действием поля Е<sub>внешн</sub> сдвигаются к краю кольца, противоположному направлению Е<sub>внешн</sub>, но внутреннее поле электронов удерживает их в кольце, и они ускоряются вместе с электронами. Ускорения заряженных частиц коллективные методы..

Движение кольцевого сгустка из электронов и положительно заряженных ионов во внешнем поле Евнешн в коллективном ускорителе. Ионы под действием поля Евнешн сдвигаются к краю кольца, противоположному направлению Евнешн, но внутреннее поле электронов удерживает их в кольце, и они ускоряются вместе с электронами.

  Ниже рассмотрены некоторые, наиболее характерные из коллективных методов ускорения.

1. Ускорение ионов электронными пучками
2. Плазменный метод ускорения
3. Ускорение ионов электронными кольцами
Так же Вы можете узнать о...


Виброизоляция, защита сооружений, машин, приборов и людей от вредного воздействия вибрации путём введения промежуточных деформируемых элементов между источником вибрации и защищаемым объектом.
Декорирование, экспериментальный метод обнаружения дислокаций в кристаллах, заключающийся в химической или термической обработке кристалла, в результате которой в объёме кристалла вдоль линий дислокаций выделяются маленькие, но видимые частички (комплексы примесных атомов).
Кайма, нагорье на С. Кореи; см. Кэма.
Курсовой гироскоп, см. Гироскоп направления.
Монашество (от греч. monachos — одинокий, отшельник, монах), социальная религиозная группа, члены которой принимают на себя ряд обязательств: в первую очередь — «уход из мира»; как правило, отказ от имущества; воздержание (обязательное безбрачие); разрыв старых родственных и социальных связей; подчинение суровой дисциплине.
Пентолит
Ртути хлориды, соединения ртути с хлором: хлористая ртуть Hg2CI2 (каломель) и хлорная ртуть HgCl2 (сулема).
Схалкер Корнелис Схалкер (Schalker) Корнелис (31.7. 1890, — 13.
Хаджи-Мурат [конец 90-х гг. 18 в., Хунзах, ныне Дагестанская АССР, — 23.
Языкознание, лингвистика, языковедение, наука о языке.
Биггар Джозеф Гиллис Биггар (Biggar) Джозеф Гиллис (1828 — 19.2.1890), деятель ирландского национального движения.
Гемицеллюлозы, высокомолекулярные (молярная масса 1000—12000) гетерополисахариды (см.
Животное население, животный мир, исторически сложившаяся совокупность особей одного или многих видов животных в пределах какой-либо территории или акватории.
Князев Василий Васильевич [6(18).1.1887 — 10.
Маварди Абу-ль-Хасан Али ибн Мухаммед (974, Басра, — 27.
Новороссийский университет, один из старейших университетов России (в Новороссии), основан в 1865 в Одессе на базе Ришельевского лицея, существовавшего с 1817.
Пресноводные черепахи, группа черепах, проводящих большую часть жизни в реках, озёрах и болотах, но размножающихся на суше; питаются преимущественно животной пищей.
Скалигер Жозеф Жюст Скалигер (Scaliger) Жозеф Жюст (Йозефус Юстус) (5.