Магнитометр

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МАА
МАБ
МАВ
МАГ
МАД
МАЕ
МАЁ
МАЖ
МАЗ
МАИ
МАЙ
МАК
МАЛ
МАМ
МАН
МАО
МАП
МАР
МАС
МАТ
МАУ
МАФ
МАХ
МАЦ
МАЧ
МАШ
МАЭ
МАЮ
МАЯ

Магнитометр (от греч. magnetis — магнит и ...метр), прибор для измерения характеристик магнитного поля и магнитных свойств веществ (магнитных материалов). В зависимости от определяемой величины различают приборы для измерения: напряжённости поля (эрстедметры), направления поля (инклинаторы и деклинаторы), градиента поля (градиентометры), магнитной индукции (тесламетры), магнитного потока (веберметры, или флюксметры), коэрцитивной силы (коэрцитиметры), магнитной проницаемости (мю-метры), магнитной восприимчивости (каппа-метры), магнитного момента.

  В более узком смысле Магнитометр — приборы для измерения напряжённости, направления и градиента магнитного поля. В современных Магнитометр для отсчёта значений измеряемой величины применяются следующие методы: визуальный отсчёт по шкале, запись в цифровой или аналоговой форме, фотозапись, запись на магнитных лентах, перфолентах и перфокартах. Шкалы Магнитометр градуируются в единицах напряжённости магнитного поля СГС системы единиц (эрстед, мэ, мкэ, гамма = 105 э) и в единицах магнитной индукции СИ (тесла, мктл, нтл).

Различают Магнитометр для измерений абсолютных значений характеристик поля и относительных изменений поля в пространстве или во времени. Последние называются вариометрами магнитными. Магнитометр классифицируют также по условиям эксплуатации (стационарные, на подвижных платформах и т.д.), и, наконец, в соответствии с физическими явлениями, положенными в основу их действия (см. Магнитные измерения).

  Магнитостатические Магнитометр основаны на измерении механического момента J, действующего на индикаторный магнит прибора в измеряемом поле Низм; J= [М, Низм], где М — магнитный момент индикаторного магнита. Момент J в Магнитометр различной конструкции сравнивается: а) с моментом кручения кварцевой нити (действующие по этому принципу кварцевые Магнитометр и универсальные магнитные вариометры на кварцевой растяжке обладают чувствительностью G ~ 1 нтл); б) с моментом силы тяжести (магнитные весы с G ~ 10—15 нтл); в) с моментом, действующим на вспомогательный эталонный магнит, установленный в определённом положении (оси индикаторного и вспомогательного магнитов в положении равновесия перпендикулярны). В последнем случае, определяя дополнительно период колебания вспомогательного магнита в поле Низм, можно измерить абсолютную величину Низм (абсолютный метод Гаусса). Основное назначение магнитостатических Магнитометр — измерение компонент и абсолютной величины напряжённости геомагнитного поля (рис. 1), градиента поля, а также магнитных свойств веществ.

Рис. 1. Схема кварцевого магнитометра для измерения вертикальной составляющей (Z) напряжённости геомагнитного поля: 1 — оптическая система зрительной трубы; 2 — оборотная призма для совмещения шкалы 9 с полем зрения; 3 — магниточувствительная система (постоянный магнит на кварцевой растяжке 5); 4 — зеркало; 6 — магнит для частичной компенсации геомагнитного поля (изменения диапазона прибора); 7 — кварцевая рамка; 8 — измерительный магнит. Магниточувствительную систему приводят в горизонтальное положение, воздействуя измерительным магнитом. По углу поворота магнита 8 судят о величине Z—компоненты. 10 — оптическая система для освещения шкалы. Магнитометр.

Рис. 1. Схема кварцевого магнитометра для измерения вертикальной составляющей (Z) напряжённости геомагнитного поля: 1 — оптическая система зрительной трубы; 2 — оборотная призма для совмещения шкалы 9 с полем зрения; 3 — магниточувствительная система (постоянный магнит на кварцевой растяжке 5); 4 — зеркало; 6 — магнит для частичной компенсации геомагнитного поля (изменения диапазона прибора); 7 — кварцевая рамка; 8 — измерительный магнит. Магниточувствительную систему приводят в горизонтальное положение, воздействуя измерительным магнитом. По углу поворота магнита 8 судят о величине Z—компоненты. 10 — оптическая система для освещения шкалы.

  Электрические Магнитометр основаны на сравнении Низм с полем эталонного соленоида Н = kl, где k — постоянная соленоида, определяемая из геометрических и конструктивных его параметров, I — измеряемый ток. Электромагнитные Магнитометр состоят из компаратора для измерения размеров соленоида и обмотки, теодолита для точной ориентации оси соленоида по направлению измеряемой компоненты поля, потенциометрической системы для измерения тока I и чувствительного датчика — индикатора равенства полей. Чувствительность Магнитометр этого типа ~ 1 мкэ, основная область применения — измерение горизонтальной и вертикальной составляющих геомагнитного поля.

  Индукционные Магнитометр основаны на явлении электромагнитной индукции — возникновении эдс в измерительной катушке при изменении проходящего сквозь её контур магнитного потока Ф. Изменение потока DФ в катушке может быть связано: а) с изменением величины или направления измеряемого поля во времени (примеры — индукционные вариометры, флюксметры). Простейший флюксметр (веберметр) представляет собой баллистический гальванометр, действующий в сильно переуспокоенном режиме (G~ 10-4вб/деление); широко применяются магнитоэлектрические веберметры с G~ 10-6вб/деление, фотоэлектрические веберметры с G~ 10-8вб/деление и другие (подробнее см. Флюксметр); б) с периодическим изменением положения (вращением, колебанием) измерительной катушки в измеряемом поле (рис. 2); простейшие тесламетры с катушкой на валу синхронного двигателя обладают G ~ 10-4 тл. У наиболее чувствительных вибрационных Магнитометр G~ 0,1—1 нтл; в) с изменением магнитного сопротивления измерительной катушки, что достигается периодическим изменением магнитной проницаемости пермаллоевого сердечника (он периодически намагничивается до насыщения вспомогательным переменным полем возбуждения); действующие по этому принципу феррозондовые Магнитометр имеют G~ 0,2—1 нтл (см. Феррозонд). Индукционные Магнитометр применяются для измерения земного и космических магнитных полей, технических полей, в магнитобиологии и т.д.

  Квантовые Магнитометр — приборы, основанные на ядерном магнитном резонансе, электронном парамагнитном резонансе, свободной прецессии магнитных моментов ядер или электронов во внешнем магнитном поле и других квантовых эффектах. Для наблюдения зависимости частоты w прецессии магнитных моментов микрочастиц от напряжённости Низм измеряемого поля (w = gНизм, где gмагнитомеханическое отношение) необходимо создать макроскопический магнитный момент ансамбля микрочастиц (ядер или электронов). В зависимости от способа создания макроскопического магнитного момента и метода детектирования сигнала различают: протонные Магнитометр (свободной прецессии, с динамической поляризацией и с синхронной поляризацией), резонансные Магнитометр (электронные и ядерные), Магнитометр с оптической накачкой и другие (подробнее см. в ст. Квантовый магнитометр). Квантовые Магнитометр применяются для измерения напряжённости слабых магнитных полей (в том числе геомагнитного и магнитного поля в космическом пространстве), в геологоразведке, в магнетохимии (G до 10-5—10-7нтл). Значительно меньшую чувствительность (G~ 10-5 тл) имеют квантовые Магнитометр для измерения сильных магнитных полей.

  Сверхпроводящие квантовые Магнитометр основаны на квантовых эффектах в сверхпроводниках: выталкивании магнитного поля из сверхпроводника (см. Мейснера эффект), квантовании магнитного потока в сверхпроводнике, на зависимости от Низм критического тока контакта двух сверхпроводников (см. Джозефсона эффект). Сверхпроводящими Магнитометр измеряют компоненты геомагнитного поля, они нашли применение в биофизике, магнетохимии и т.д. Чувствительность сверхпроводящих Магнитометр достигает ~ 10-5нтл (подробнее см. Сверхпроводящие магнитометры).

  Гальваномагнитные Магнитометр основаны на явлении искривления траектории электрических зарядов, движущихся в магнитном поле Низм, под действием Лоренца силы (см. Гальваномагнитные явления). К этой группе Магнитометр относятся: Магнитометр на Холла эффекте (возникновении между гранями проводящей пластинки разности потенциалов, пропорциональной протекающему току и Низм); Магнитометр на эффекте Гаусса (изменении сопротивления проводника в поперечном магнитном поле Низм); на явлении падения анодного тока в вакуумных магнетронах и электроннолучевых трубках (вызванного отклонением электронов в магнитном поле) и другие. На эффекте Холла основано действие различного рода тесламетров для измерения постоянных, переменных и импульсных магнитных полей (чувствительностью 10-4—10-5тл,рис. 3); градиентометров и приборов для исследования магнитных свойств материалов. Чувствительность тесламетров, работающих на основе эффекта Гаусса, достигает 10 мкв/тл; чувствительность электронно-вакуумных Магнитометр ~ 30 нтл.

Для измерения напряжённости и изучения топологии магнитного поля в различных средах нашли применение Магнитометр, основанные на вращении плоскости поляризации света в магнитном поле или поле намагниченного образца (см. Фарадея эффект, Керра эффект), на изменении длины намагниченного стержня под действием приложенного поля (см. Магнитострикция) и др. Магнитометр различных принципов действия и чувствительности широко применяются в геофизике, физике космоса, ядерной физике, магнетохимии, биофизике, дефектоскопии и в качестве элементов автоматики и средств управления.

 

  Лит.: Яновский Б. Магнитометр, Земной магнетизм, [т. 2, 2 изд.], Л., 1963; Чечурина Е. Н., Приборы для измерения магнитных величин, Магнитометр, 1969; Померанцев Н. Магнитометр, Рыжков В. Магнитометр, Скроцкий Г. В., Физические основы квантовой магнитометрии, Магнитометр, 1972; Instrumenten und Massenmethoden, в книге: Geomagnetismus und Aeronomie, Bd 2, В., 1960; Communications présentées an colloque international champs magnétiques faibles d’Intéret géophysique et spatial, Paris, 20—23 mai 1969, «Revue de physique appliquée», 1970, t. 5, № 3.

Рис. 2. Блок-схема и конструкция преобразователя вибрационного тесламетра: 1 — измерительная катушка, укрепленная на торце пьезокристалла 2 (вибратора); 3 — зажим для крепления пьезокристалла; 4 — усилитель сигнала; сигнал детектируется и измеряется прибором магнитоэлектрической системы 5; 6 — генератор электромагнитных колебаний; 7 — источник питания. Магнитометр.

Рис. 2. Блок-схема и конструкция преобразователя вибрационного тесламетра: 1 — измерительная катушка, укрепленная на торце пьезокристалла 2 (вибратора); 3 — зажим для крепления пьезокристалла; 4 — усилитель сигнала; сигнал детектируется и измеряется прибором магнитоэлектрической системы 5; 6 — генератор электромагнитных колебаний; 7 — источник питания.

Рис. 3. Принципиальная схема тесламетра, основанного на эффекте Холла (компенсационного типа): E<sub>1</sub> и Е<sub>2</sub> — источники постоянного тока; r<sub>1</sub> и r<sub>2</sub> — резисторы; G — гальванометр, mА — миллиамперметр; ПХ — преобразователь Холла (полупроводниковая пластинка). Эдс Холла компенсируется падением напряжения на части калиброванного сопротивления r<sub>2</sub>, через которое протекает постоянный ток. Магнитометр.

Рис. 3. Принципиальная схема тесламетра, основанного на эффекте Холла (компенсационного типа): E1 и Е2 — источники постоянного тока; r1 и r2 — резисторы; G — гальванометр, mА — миллиамперметр; ПХ — преобразователь Холла (полупроводниковая пластинка). Эдс Холла компенсируется падением напряжения на части калиброванного сопротивления r2, через которое протекает постоянный ток.

  Ш. Ш. Долгинов.

Так же Вы можете узнать о...


Гусев Николай Николаевич [9(21).3. 1882, Рязань, — 23.
Дученто (итал. ducento — тринадцатый век, буквально — двести), наименование периода в истории итальянской культуры, положившего начало искусству Проторенессанса.
Иммунизация (от лат. immunis — свободный, избавленный от чего-либо), метод создания искусственного иммунитета у людей и животных.
Катодолюминесценция ,люминесценция, возникающая при возбуждении люминофора электронным пучком; один из видов радиолюминесценции.
Копулировка (от лат. Copulo — соединяю), способ прививки черенком, когда привой и подвой имеют одинаковую толщину.
Лаццарони (итал. lazzaroni — нищие, босяки), деклассированные люмпен-пролетарские элементы в Южной Италии.
Мантинея (Mantineia), древнегреческий город в области Аркадия, в районе которого 27 июня (или 3 июля) 362 до н.
Монфокон Бернар де Монфокон (Montfaucon) Бернар де (13.1.1655, Сулаж, — 21.
Нордизм, разновидность расизма, лженаучная теория, в основе которой лежит утверждение о превосходстве т.
Пармиджанино Франческо Пармиджанино (Parmigianino; собственное Маццола, Mazzola) Франческо (11.
Порей-лук (Allium porrum), вид многолетнего лука.
Резайе (озеро) Резайе, Урмия, бессточное озеро на З. Ирана.
Северо-Западный поход 1934—1936, перебазирование основных сил китайской Красной армии (ККА) из советских районов, находившихся в Центральном и Южном Китае, на северо-западе страны, в провинции Шэньси и Ганьсу.
Спектральный анализ (в линейной алгебре) Спектральный анализ линейных операторов, обобщение выросшей из задач механики теории собственных значений и собственных векторов матриц (т.
Тенга (тюркское), серебряная монета Средней Азии (Хивы, Бухары, Ташкента, Коканда), чеканившаяся до 1893.