открытия нейтрино"> открытия нейтрино"> открытия нейтрино">

Нейтрино История открытия нейтрино

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
НА НГ НД НЕ НЁ НЗ НИ НК НО НР НС НУ НЧ НЫ НЬ НЭ НЮ НЯ
НЕА
НЕБ
НЕВ
НЕГ
НЕД
НЕЕ
НЕЖ
НЕЗ
НЕИ
НЕЙ
НЕК
НЕЛ
НЕМ
НЕН
НЕО
НЕП
НЕР
НЕС
НЕТ
НЕУ
НЕФ
НЕХ
НЕЧ
НЕШ
НЕЯ

История открытия нейтрино

Гипотеза Паули. Открытие Нейтрино принадлежит к числу наиболее ярких и вместе с тем трудных страниц в физике 20 в. Прежде чем стать равноправным членом семьи элементарных частиц, Нейтрино долгое время оставалось гипотетической частицей.

  Впервые в экспериментальной физике Нейтрино проявилось в 1914, когда английский физик Дж. Чедвик обнаружил, что электроны, испускаемые при b-распаде атомных ядер (в отличие от a-частиц и g-квантов, испускаемых при др. видах радиоактивных превращений), имеют непрерывный энергетический спектр. Это явление находилось в явном противоречии с теорией квантов, требовавшей, чтобы при квантовых переходах между стационарными состояниями ядер выделялась дискретная порция энергии (постулат Бора). Поскольку при испускании a-частиц и g-квантов это требование выполнялось, возникло подозрение, что при b-распаде нарушается закон сохранения энергии.

  В 1930 швейцарский физик В. Паули в письме участникам семинара в Тюбингене сообщил о своей «отчаянной попытке» «спасти» закон сохранения энергии. Паули высказал гипотезу о существовании новой электрически нейтральной сильно проникающей частицы со спином 1/2 и с массой £ 0,01 массы протона, которая испускается при b-распаде вместе с электроном, что и приводит к нарушению однородности спектра b-электронов за счёт распределения дискретной порции энергии (соответствующей переходу ядра из одного состояния в другое) между обеими частицами. После открытия в 1932 тяжёлой нейтральной частицы — нейтрона, итальянский физик Э. Ферми предложил называть частицу Паули «нейтрино». В 1933 Паули сформулировал основные свойства Нейтрино в их современном виде. Как выяснилось позже, эта гипотеза «спасла» не только закон сохранения энергии, но и законы сохранения импульса и момента количества движения, а также основные принципы статистики частиц в квантовой механике.

Теория b-распада Ферми. Гипотеза Паули естественным образом вошла в теорию b-распада, созданную Ферми в 1934 и позволившую описать явления электронного (b-) и позитронного (b+) распадов и К-захвата. Появилась теоретическая возможность ввести два разных Нейтрино: антинейтрино, рождающееся в паре с электроном, и Нейтрино, рождающееся в паре с позитроном.

  В теории Ферми b- (b+)-распад есть превращение нейтрона n (протона р) внутри ядра в протон (нейтрон):

С помощью теории Ферми была рассчитана форма спектра b-электронов, оказавшаяся вблизи верхней границы энергии b-электронов очень чувствительной к массе mn Нейтрино Сравнение теоретической формы спектра с экспериментальной показало, что масса Нейтрино много меньше массы электрона (и, возможно, равна нулю). Теория Ферми объяснила все основные черты b-распада, и её успех привёл физиков к признанию Нейтрино Однако сомнения в существовании этой частицы ещё оставались.

Эксперименты по обнаружению нейтрино. Известны две возможности экспериментального обнаружения Нейтрино Первая — наблюдение обратного b-распада — впервые рассмотрена Х. Бете и Р. Пайерлсом в 1934. Обратным b-распадом называются реакции (существование которых следует из теории Ферми):

происходящие как на свободных, так и на связанных в ядрах нуклонах. Оценка вероятности (сечения) поглощения Нейтрино дала поразительный результат: в твёрдом веществе Нейтрино с энергией, характерной для b-распада, должно пройти расстояние порядка сотен световых лет, прежде чем будет захвачено ядром. В 30—40-х гг. обнаружить такую частицу казалось вообще невозможным.

  Другой путь — наблюдение отдачи ядра в момент испускания Нейтрино — впервые рассмотрен советским физиком А. И. Лейпунским. В 1938 А. И. Алиханов и А. И. Алиханьян предложили использовать для этой цели реакцию К-захвата в 7Be: ядро 7Be захватывает электрон из К-оболочки атома и испускает Нейтрино, превращаясь в ядро 7Li, 7Ве (е-, ne)7Li; при этом, если Нейтрино — реальная частица, 7Li получает импульс, равный и противоположный по знаку импульсу Нейтрино Первый успешный опыт с этой реакцией был выполнен американским физиком Дж. Алленом в 1942. Оказалось, что энергия отдачи ионов 7Li согласуется с теоретическим значением (в предположении нулевой массы Нейтрино). Последующие опыты с большей точностью подтвердили этот результат. Существование Нейтрино стало экспериментальным фактом. В физике появилась новая частица, все свойства которой были определены из косвенных экспериментов.

  Обнаружение свободного Нейтрино в процессе обратного b-распада стало возможным после создания мощных ядерных реакторов и больших водородсодержащих сцинтилляционных детекторов. В реакторе в результате b--распада осколков деления урана испускаются антинейтрино с энергией до 10 Мэв, в среднем 6 частиц на 1 деление. Поток антинейтрино от мощного реактора составляет (вблизи реактора) около 1013 частиц на 1 см2 в 1 сек.

Эксперимент по прямому детектированию ne впервые был осуществлен в 1953 в США Ф. Райнесом и К. Коуэном на реакторе в Хэнфорде. Регистрировалась реакция (2') на водороде, входящем в состав сцинтилляционной жидкости с добавкой соли кадмия, сильно поглощающего нейтроны. С помощью техники запаздывающих совпадений удалось выделить из фона характерную цепочку событий, вызываемых антинейтрино: позитрон, рождающийся в реакции (2'), аннигилируя с электроном, испускает два g-кванта, которые производят первую сцинтилляционную вспышку; через 5—10 мксек за ней следует вторая вспышка от g-квантов, испущенных ядром кадмия в результате захвата нейтрона, образовавшегося в реакции (2') и замедлившегося в водородсодержащей жидкости. В 1956—59 опыт был повторен в лучших условиях (рис. 1). Было получено сечение s = (11 ± 2,6)·10-44см2. Теоретическая величина сечения (усреднённого по спектру антинейтрино) в предположении двухкомпонентного Нейтрино (см. ниже) равна (10—14)×10-44см2. Эти опыты окончательно подтвердили существование свободного Нейтрино

Рис. 1. Схема опыта Ф. Райнеса и К. Коуэна (1958) на реакторе в Саванна-Ривер, США: 1 — жидкий сцинтилляционный детектор (1400 л) для регистрации антинейтрино; 2 — сцинтилляционный детектор для регистрации фона космических лучей, включенный на антисовпадения с детектором 1; 3 — две группы фотоумножителей, включенные на совпадение; 4 — электронная аппаратура; 5 — двухлучевой осциллограф; 6 — свинцовый и парафиновый экраны для защиты от излучений реактора. Нейтрино.

Рис. 1. Схема опыта Ф. Райнеса и К. Коуэна (1958) на реакторе в Саванна-Ривер, США: 1 — жидкий сцинтилляционный детектор (1400 л) для регистрации антинейтрино; 2 — сцинтилляционный детектор для регистрации фона космических лучей, включенный на антисовпадения с детектором 1; 3 — две группы фотоумножителей, включенные на совпадение; 4 — электронная аппаратура; 5 — двухлучевой осциллограф; 6 — свинцовый и парафиновый экраны для защиты от излучений реактора.

Нейтрино (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином1/2 (в единицах постоянной Планка ) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе лептонов, а по своим статистическим свойствам относится к классу фермионов. Название «Н.» применяется к двум различным элементарным частицам — к электронному (ne) и к мюонному (nm) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+), мюонным — Н., взаимодействующее в паре с мюоном (m-, m+). Оба вида Н. имеют соответствующие античастицы: электронное

и мюонное

антинейтрино. Электронные и мюонные Н. принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов) Le и Lm, при этом принимается, что Le= + 1, Lm = 0 для nе и Le = 1, Lm = 0 для , Le = 0, Lm = + 1 для nm и Le = 0, Lm = — 1 для . В отличие от др. частиц, Н. обладают удивительным свойством иметь строго определённое значение спиральности l — проекции спина на направление импульса: Н. имеют левовинтовую спиральность (l = —1/2), т. е. спин направлен против направления движения частицы, антинейтрино — правовинтовую (l = + 1/2), т. е. спин направлен по направлению движения.

  Н. испускаются при бета-распаде атомных ядер, К-захвате, захвате m-ядрами и при распадах нестабильных элементарных частиц, главным образом пи-мезонов (p+, p-), К-мезонов и мюонов. Источниками Н. являются также термоядерные реакции в звёздах.

  Н. принимают участие лишь в слабом взаимодействии и гравитационном взаимодействии и не участвуют в электромагнитном и сильном взаимодействиях. С этим связана крайне высокая проникающая способность Н., позволяющая этой частице свободно проходить сквозь Землю и Солнце.

История открытия нейтрино
Основные свойства нейтрино
Взаимодействия нейтрино
Естественные источники нейтрино
Так же Вы можете узнать о...


Рытов Михаил Васильевич [4(16).1.1846, Новомиргород, ныне Кировоградской области, — 17.
Сафаралиев, посёлок городского типа в Ханларском районе Азербайджанской ССР.
Сенуфо, народ, живущий на С. Республики Берег Слоновой Кости, на юго-востоке Мали и в пограничных районах Верхней Вольты.
Скафандр (франц. scaphandre, от греч. skaphe — лодка и aner, родительный падеж andros — человек), индивидуальное герметичное снаряжение, обеспечивающее жизнедеятельность и работоспособность человека в условиях, отличающихся от нормальных.
Солёное, посёлок городского типа, центр Солонянского района Днепропетровской области УССР.
СССР. Строительство Строительство.
Суассон (Soissons), город на С. Франции, в департаменте Эна на р.
Таллинский художественный музей, Художественный музей Эстонской ССР (с 1970), крупнейший художественных музей Эстонии.
Терморецепторы, термоцепторы, нервные окончания (рецепторы) в различных тканях и органах, специфически реагирующие на изменения температуры тела изменением частоты биоэлектрических импульсов и посылающие соответствующие сигналы в центр терморегуляции.
Торфяные машины, машины для подготовки торфяных месторождений к эксплуатации, добычи, сушки, уборки, погрузки и транспортировки торфа.