источники нейтрино"> источники нейтрино"> источники нейтрино">

Нейтрино Естественные источники нейтрино

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
НА НГ НД НЕ НЁ НЗ НИ НК НО НР НС НУ НЧ НЫ НЬ НЭ НЮ НЯ
НЕА
НЕБ
НЕВ
НЕГ
НЕД
НЕЕ
НЕЖ
НЕЗ
НЕИ
НЕЙ
НЕК
НЕЛ
НЕМ
НЕН
НЕО
НЕП
НЕР
НЕС
НЕТ
НЕУ
НЕФ
НЕХ
НЕЧ
НЕШ
НЕЯ

Естественные источники нейтрино

Естественная радиоактивность. Любое космическое тело, в том числе Земля, содержит значительное количество радиоактивных элементов и является источником Нейтрино Регистрация антинейтрино от Земли в принципе возможна, однако методы регистрации ещё не разработаны.

  Столкновение протонов космических лучей с газом и реликтовыми фотонами может приводить к рождению заряженных p-мезонов, распад которых сопровождается испусканием Нейтрино (или антинейтрино). В этом механизме возможна генерация Нейтрино с энергиями вплоть до Еn = 1020 эв. Источником таких Нейтрино является атмосфера Земли, а также ядро и диск Галактики, где сосредоточена основная масса межзвёздного газа. Нейтрино от столкновения протонов сверхвысоких энергий с реликтовыми фотонами испускаются во всём мировом пространстве. Существует гипотеза, что Нейтрино сверхвысоких энергий являются причиной сверхмощных широких атмосферных ливней (см. Космические лучи).

Атмосфера Земли — пока единственный естественный источник, от которого удалось зарегистрировать Нейтрино Рождаются Нейтрино в верхних слоях атмосферы, где генерируется наибольшее число pи К-мезонов. Впервые идея экспериментов с Нейтрино космических лучей была высказана М. А. Марковым (1960). Было предложено регистрировать глубоко под землёй мюоны с энергией 10—100 Гэв от реакции nm + n ® р + m-(**). Регистрируя мюоны из нижней полусферы Земли и под большими зенитными углами, можно избавиться от фона атмосферных мюонов и иметь чистые нейтринные события (**). Первые результаты получены в Индии и в Южной Африке в 1965 с помощью специальных нейтринных телескопов (рис. 4). К 1973 мировая статистика насчитывала свыше сотни нейтринных событий.

Рис. 4. а — схема нейтринного телескопа, установленного в шахте Южной Индии на глубине около 2300 м: 1 — пластические сцинтилляционные элементы, площадью 1 м<sup>2</sup>, каждый из которых просматривается двумя фотоумножителями 2; регистрируются четырёхкратные совпадения между парой фотоумножителей на одной стороне и любой парой — на другой; между сцинтилляторами установлено неск. слоев неоновых трубок 3 для фотографирования следов заряженных частиц, образованных нейтрино; 4 свинцовые поглотители толщиной 2,5 см; б — случай неупругого взаимодействия нейтрино, пришедшего из нижней полусферы Земли<span style='font-family:; 5, 6 — следы, оставленные, по-видимому, мюоном и пи-мезоном, которые образовались внутри скалы при столкновении nm с нуклоном. Нейтрино." alt="Рис. 4. а — схема нейтринного телескопа, установленного в шахте Южной Индии на глубине около 2300 м: 1 — пластические сцинтилляционные элементы, площадью 1 м2, каждый из которых просматривается двумя фотоумножителями 2; регистрируются четырёхкратные совпадения между парой фотоумножителей на одной стороне и любой парой — на другой; между сцинтилляторами установлено неск. слоев неоновых трубок 3 для фотографирования следов заряженных частиц, образованных нейтрино; 4 свинцовые поглотители толщиной 2,5 см; б — случай неупругого взаимодействия нейтрино, пришедшего из нижней полусферы Земли; 5, 6 — следы, оставленные, по-видимому, мюоном и пи-мезоном, которые образовались внутри скалы при столкновении nm с нуклоном.">

Рис. 4. а — схема нейтринного телескопа, установленного в шахте Южной Индии на глубине около 2300 м: 1 — пластические сцинтилляционные элементы, площадью 1 м2, каждый из которых просматривается двумя фотоумножителями 2; регистрируются четырёхкратные совпадения между парой фотоумножителей на одной стороне и любой парой — на другой; между сцинтилляторами установлено неск. слоев неоновых трубок 3 для фотографирования следов заряженных частиц, образованных нейтрино; 4 свинцовые поглотители толщиной 2,5 см; б — случай неупругого взаимодействия нейтрино, пришедшего из нижней полусферы Земли; 5, 6 — следы, оставленные, по-видимому, мюоном и пи-мезоном, которые образовались внутри скалы при столкновении nm с нуклоном.

Реакции термоядерного синтеза химических элементов — основной механизм генерации Нейтрино в недрах Солнца и большей части звёзд (в период их «ядерной» эволюции).

Сверхгорячаяплазма служит источником Нейтрино в звёздах на завершающих этапах эволюции, а также в модели горячей Вселенной в первые доли секунды её возникновения. Возможны два вида генерации Нейтрино Первый связан с реакциями взаимного превращения нуклонов

(так называемый урка-процесс) и может идти как на связанных нуклонах ядер при температурах Т ~ 109 К, так и на свободных нуклонах при Т³ 1010 К. Второй способ, чисто лептонный, связан с реакциями типа

а также с реакциями

(фоторождение Нейтрино),

(нейтринная аннигиляция электрон-позитронных пар) и др., которые происходят, если существует гипотетическое рассеяние ne + е ®ne + e (предсказываемое теорией Ферми). Пока не удалось доказать существование ne + е ®ne + е — рассеяния лабораторными методами (на Нейтрино от реакторов и ускорителей); считается, что астрофизические данные свидетельствуют в пользу существования такого процесса.

  Реликтовые Нейтрино Согласно модели горячей Вселенной, Нейтрино, испущенные в момент её возникновения, испытывают сильное красное смещение при космологическом расширении Вселенной. Такие реликтовые Нейтрино заполняют всё мировое пространство. В наиболее реалистическом варианте модели горячей Вселенной число мюонных и электронных Нейтрино и антинейтрино одинаково и составляет ~ 200 частиц/см3, а средняя энергия Нейтрино — (2—3)×10-4 эв, что соответствует температуре нейтринного газа 2—3 К. Для понимания механизма развития Вселенной очень важно экспериментально установить наличие реликтовых Нейтрино и измерить температуру нейтринного газа.

  В рамках модели горячей Вселенной удаётся получить наилучшую оценку для массы мюонного Нейтрино Согласно космологическим данным, плотность материи в расширяющейся Вселенной не может превышать 10-28г/см3; отсюда следует, что максимально возможная масса мюонного Нейтрино составляет ~ 300 эв (т. е. значительно ниже верхнего предела, установленного лабораторными методами).

Нейтронизация вещества, т. е. превращение протонов в нейтроны по схеме р + е-® n + ne, может служить мощным источником Нейтрино, когда звезда по каким-либо причинам теряет гравитационную устойчивость и коллапсирует, превращаясь в нейтронную звезду. При этом огромное число Нейтрино, равное по порядку величины числу протонов в звезде (~ 1057), испускается за сотые доли сек. Если коллапсирует горячая звезда, нейтронизация происходит совместно с процессами, характерными для горячей плазмы. Такая ситуация возможна при взрывах сверхновых и при коллапсе гравитационном.

  О возможности регистрации Нейтрино от Солнца и др. звёзд см. Нейтринная астрономия.

Развитие науки о Нейтрино за последние четверть века убедительно доказало, что Нейтрино из гипотетической частицы превратилось в мощный инструмент исследования микрои макромира.

 

  Лит.: Аллен Дж., Нейтрино, пер. с англ., М., 1960; Алиханов А. И., Слабые взаимодействия. Новейшие исследования b-распада, М., 1960; Теоретическая физика 20 века, М., 1962; Окунь Л. Б., Слабое взаимодействие элементарных частиц, М., 1963; Понтекорво Б. М., Нейтрино и его роль в астрофизике, «Успехи физических наук», 1963, т. 79, в. 1, с. 3; Марков М. А., Нейтрино, М., 1964; Железных И. М., Подземные нейтринные эксперименты, «Успехи физических наук». 1966, т. 89, в. 3, с. 513; Ли Ц. и Ву Ц., Слабые взаимодействия, пер. с англ., М., 1968; Бугаев Э. В., Котов Ю. Д., Розенталь И. Л., Космические мюоны и нейтрино, М., 1970; Березинский В. С., Нейтрино, М., 1973.

  Г. Т. Зацепим, Ю. С. Копысов.

Нейтрино (итал. neutrino, уменьшительное от neutrone — нейтрон), электрически нейтральная элементарная частица с массой покоя много меньшей массы электрона (возможно равной нулю), спином1/2 (в единицах постоянной Планка ) и исчезающе малым, по-видимому, нулевым, магнитным моментом. Н. принадлежит к группе лептонов, а по своим статистическим свойствам относится к классу фермионов. Название «Н.» применяется к двум различным элементарным частицам — к электронному (ne) и к мюонному (nm) Н. Электронным называется Н., взаимодействующее с др. частицами в паре с электроном е- (или позитроном е+), мюонным — Н., взаимодействующее в паре с мюоном (m-, m+). Оба вида Н. имеют соответствующие античастицы: электронное

и мюонное

антинейтрино. Электронные и мюонные Н. принято различать с помощью сохраняющихся аддитивных лептонных квантовых чисел (лептонных зарядов) Le и Lm, при этом принимается, что Le= + 1, Lm = 0 для nе и Le = 1, Lm = 0 для , Le = 0, Lm = + 1 для nm и Le = 0, Lm = — 1 для . В отличие от др. частиц, Н. обладают удивительным свойством иметь строго определённое значение спиральности l — проекции спина на направление импульса: Н. имеют левовинтовую спиральность (l = —1/2), т. е. спин направлен против направления движения частицы, антинейтрино — правовинтовую (l = + 1/2), т. е. спин направлен по направлению движения.

  Н. испускаются при бета-распаде атомных ядер, К-захвате, захвате m-ядрами и при распадах нестабильных элементарных частиц, главным образом пи-мезонов (p+, p-), К-мезонов и мюонов. Источниками Н. являются также термоядерные реакции в звёздах.

  Н. принимают участие лишь в слабом взаимодействии и гравитационном взаимодействии и не участвуют в электромагнитном и сильном взаимодействиях. С этим связана крайне высокая проникающая способность Н., позволяющая этой частице свободно проходить сквозь Землю и Солнце.

История открытия нейтрино
Основные свойства нейтрино
Взаимодействия нейтрино
Естественные источники нейтрино
Так же Вы можете узнать о...


Очистка населённых мест, комплекс организационных и технических мероприятий по сбору, транспортировке и обезвреживанию отбросов, образующихся на территории населённых мест.
Пенелопа, в древнегреческой эпической поэме «Одиссея» жена Одиссея, мать Телемаха.
Плагиат (от лат. plagio — похищаю), вид нарушения прав автора или изобретателя.
Польское наследство, Война за польское наследство (1733—35), между Россией, Австрией и Саксонией, с одной стороны, и Францией — с другой.
Пробой электрический, общее название различных по физической природе процессов, приводящих к резкому возрастанию силы электрического тока в среде, исходно не (или очень слабо) электропроводной.
Равенство (математич.) Равенство, отношение взаимной заменимости (подстановочности) объектов, которые именно в силу их взаимной заменимости считают равными.
Ренсимена миссия 1938

, возглавлявшаяся лордом У.
Русские сезоны за границей, выступления русской оперы и балета, организованные в 1907 С.
Сахель (араб. — берег, край), узкая (320—480 км) полоса полупустынь и опустыненных саванн в Африке, переходных от пустынь Сахары к типичным ландшафтам Судана.
Сети линий на поверхности, всевозможные пары однопараметрических семейств линий, лежащих на поверхности.