Периодические решенияБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Периодические решения уравнений, решения, описывающие правильно повторяющиеся процессы. Для теории колебаний, небесной механики и др. наук особый интерес представляют Периодические решения системы дифференциальных уравнений Рис. к ст. Периодические решения. Это такие решения yi = ji (t), которые состоят из периодических одного и того же периода функций независимого переменного t, то есть для всех значений t ji (t + t) = ji (t) где t > 0—период решения. Если система (1) стационарна, то есть функции fi = Fi (yi,.... yn), где i = 1,..., n, явным образом не зависят от t, то в фазовом пространстве (yi,..., yi) Периодические решения отвечают замкнутые траектории. В частном случае эти траектории могут вырождаться в точки покоя В теории нелинейных колебаний особое значение имеет система двух уравнений фазовым пространством которой является плоскость (х, у). Точки покоя системы (2) находятся из системы уравнений: Р (х, у) = 0, Q (x, у) = 0. Система (2) заведомо не допускает нетривиальных Периодические решения, если
Лит.: Немыцкий В. В. и Степанов В. В., Качественная теория дифференциальных уравнений, 2 изд., М.— Л., 1949; Андронов А. А., Витт А. А., Хайкин С. Э., Теория колебаний, 2 изд., М., 1959; Стокер Дж., Нелинейные колебания в механических и электрических системах, пер. с англ., 2 изд., М., 1953. |
||||||||||||||||||||||||||||||||||||||||||||||
|