Причинности принцип

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ПА ПЕ ПЁ ПИ ПЛ ПН ПО ПП ПР ПС ПТ ПУ ПФ ПХ ПЧ ПШ ПЫ ПЬ ПЭ ПЮ ПЯ
ПРА
ПРЕ
ПРЁ
ПРЖ
ПРИ
ПРО
ПРУ
ПРШ
ПРЫ
ПРЮ
ПРЯ

Причинности принцип в физике, один из наиболее общих принципов, устанавливающий допустимые пределы влияния физических событий друг на друга: Причинности принцип исключает влияние данного события на все уже прошедшие события («будущее не влияет на прошлое», «событие-причина предшествует по времени событию-следствию»). Причинности принцип требует также отсутствия взаимного влияния таких событий, применительно к которым понятия «раньше», «позже» не имеют смысла: более раннее для одного наблюдателя событие представляется другому наблюдателю более поздним; согласно специальной теории относительности (см. Относительности теория), именно такая ситуация возникает, когда пространственное расстояние между событиями столь велико, а временной интервал между ними столь мал, что эти события могли бы быть связаны лишь сигналом, распространяющимся быстрее света. Требование отсутствия причинной связи между ними, которую мог бы осуществить соединяющий эти события сигнал, и ведёт к известному выводу о невозможности движений со скоростью, превышающей скорость света в вакууме.

  В аппарате физической теории Причинности принцип используется прежде всего для выбора граничных условий к соответствующим уравнениям динамики, что обеспечивает однозначность их решения. Так, при решении электродинамических Максвелла уравнений Причинности принцип делает выбор между опережающими и запаздывающими потенциалами в пользу последних. Аналогично в квантовой теории поля Причинности принцип делает однозначной технику Фейнмана диаграмм — важный инструмент теоретического описания взаимодействующих полей или частиц. Кроме того, Причинности принцип позволяет установить общие свойства величин, описывающих реакцию физической системы на внешние воздействия. Сюда относятся аналитические свойства диэлектрической проницаемости системы как функции частоты (т. н. дисперсионные соотношения Крамерса — Кронига). Др. важный пример — дисперсионные соотношения в теории рассеяния сильно взаимодействующих частиц (адронов). Эти соотношения — уникальный образец точной зависимости между непосредственно наблюдаемыми величинами (амплитудой упругого рассеяния вперёд и полным сечением), выведенной без использования каких-либо модельных представлений об элементарных частицах. Особенно возросла роль Причинности принцип в теории элементарных частиц с возникновением в ней особого аксиоматического подхода, ставящего своей целью описание взаимодействий частиц непосредственно на основе общих принципов (постулатов) теории. В аксиоматическом подходе, к числу достижений которого относится вывод дисперсионных соотношений, Причинности принцип отводится конструктивная роль одного из главных (наряду с требованиями теории относительности и квантовой теории) постулатов. (См. Квантовая теория поля, V.)

  Причинности принцип безусловно подтверждается экспериментом в макроскопической области и общечеловеческой практикой. Однако его справедливость в области субъядерных масштабов, изучаемой физикой элементарных частиц, не очевидна. Это связано с тем, что под событием в формулировке Причинности принцип понимается «точечное» событие, происходящее в данной точке пространства в данный момент времени; соответственно Причинности принцип, о котором до сих пор шла речь, называется также принципом микроскопической причинности (см. Микропричинности условие). Между тем ограничения, вытекающие из квантовой теории и теории относительности, делают невозможной физическую реализацию точечного события: любое событие, т. е. любой акт взаимодействия частиц, неизбежно имеет конечную протяжённость в пространстве и времени. Поэтому в области малых масштабов Причинности принцип теряет своё непосредственное физическое содержание и становится формальным требованием. Это позволяет говорить о возможном нарушении Причинности принцип «в малом», разумеется, при сохранении его справедливости в больших масштабах пространства-времени. Такой «ослабленный» Причинности принцип называется «принципом макроскопической причинности»; его количественные формулировки, адекватно отражающей указанные выше ограничения, ещё нет. Этот принцип лежит в основе многочисленных попыток обобщения квантовой теории поля, относящихся к нелокальной квантовой теории поля.

Причинности принцип, с которым имеет дело современная физика, является конкретно-физическим утверждением, существенно более узким по своему содержанию, чем общее философское понятие причинности — взаимной обусловленности, детерминированности последовательности событий. Проблема причинности приобрела большую остроту в период становления квантовой механики, когда широко обсуждался вопрос, противоречит ли детерминизму вероятностное описание микроявлений. К отрицательному ответу на этот вопрос привело понимание необходимости отказаться от прямолинейного детерминизма классической механики при рассмотрении статистических закономерностей микромира. Кажущееся противоречие с общим Причинности принцип объясняется непригодностью классической физики для описания микрообъектов. Переход к адекватному описанию на языке волновых функций приводит к тому, что и в квантовой механике начальное состояние системы полностью определяет всю последующую её эволюцию (при известных взаимодействиях системы).

  Проблема соблюдения причинности в философском смысле («общего Причинности принцип») сохраняет свою остроту и сейчас при анализе возможных форм нарушения физического Причинности принцип «в малом»; такой анализ стимулируется разработкой нелокальной теории поля, исследованием проблемы движения со сверхсветовыми скоростями, а также специальными экспериментами с целью проверки Причинности принцип Этот анализ должен выяснить, какие формы нарушения П. п. ведут к непривычной, а какие — к недопустимой, с точки зрения общего Причинности принцип, ситуациям. Например, замена исходного Причинности принцип на противоположное утверждение («прошлое не влияет на будущее») не противоречит общему Причинности принцип, хотя и ведёт к в высшей степени непривычным следствиям. В этом случае цепочка причинно-следственных связей не разрывается, а предстаёт в обращенном во времени виде. Противоречие с общим Причинности принцип возникает в случае, если предположить, что причинная связь может быть направлена и вперёд и назад во времени. При этом можно было бы осуществить замкнутый цикл причинно-следственной связи, что привело бы к нарушению принципа «событие-следствие не влияет на породившую его событие-причину». Этот принцип имеет существенно более широкую и адекватную общему Причинности принцип формулировку, чем исходный Причинности принцип Если бы следствие было способно влиять на свою собственную причину, то это влияние могло бы выразиться в исчезновении события-причины, что, очевидно, повлекло бы за собой разрыв причинно-следственной связи. Например, испущенная излучателем волна, если бы она была способна возвратиться после отражения обратно в более ранний момент времени, могла бы взорвать излучатель ещё до того, как он начал работать. Из этих же соображений следует принципиальная невозможность путешествия на «машине времени» в прошлое.

  С Причинности принцип в современной физике связан комплекс сложных и глубоких проблем, которые ещё ждут своего решения.

 

  Лит.: Киржниц Д. А., Сазонов В. Н. (ред.), Сверхсветовые движения и специальная теория относительности, в кн.: Эйнштейновский сборник, М., 1974; см. также лит. при ст. Квантовая теория поля, Нелокальная квантовая теория поля.

  Д. А. Киржниц.

Так же Вы можете узнать о...


Большие Зондские острова, основная часть Малайского архипелага, включающая острова Суматра, Ява, Калимантан, Сулавеси.
Бустрофедон (греч. bustrophedon, от bus — бык и strepho — поворачиваю), способ письма, при котором первая строка пишется справа налево, вторая — слева направо, третья — снова справа налево и т.
Венера (мифологич.) Венера, в древнеримской мифологии первоначально богиня весны и садов; принадлежала к числу древнейших италийских божеств.
Водно-солевой обмен, совокупность процессов всасывания, распределения, потребления и выделения воды и солей в организме животных и человека.
Высшая мера наказания, см. Смертная казнь.
Генеалогия (историч.) Генеалогия (греч. genealogia — родословная), вспомогательная историческая дисциплина, занимающаяся изучением истории родов, происхождения отдельных лиц, установлением родственных связей, составлением родословий; тесно связана с геральдикой и др.
Глюкозофосфаты, промежуточные продукты углеводного обмена в тканях животных, растений и микроорганизмов; соединения глюкозы с одним или двумя остатками ортофосфорной кислоты.
Грин-Ривер (Green River), две реки в США. 1) Река в штате Кентукки, левый приток Огайо (бассейн Миссисипи).
Дежнёв Семен Иванович Дежнёв Семён Иванович (р. около 1605 — умер в начале 1673, Москва), русский землепроходец-мореход.
Диплоид (от греч. diploos — двойной и eidos — вид), организм, клетки тела которого имеют двойной (диплоидный; 2n) набор хромосом, представленный одинарным (гаплоидным; n) числом пар гомологичных хромосом.
Дьюар Джеймс Дьюар (Dewar) Джеймс (20.9.1842, Кинкардин-он-Форт, Шотландия, — 27.