Электроннооптический преобразователь

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ЭА ЭБ ЭВ ЭГ ЭД ЭЕ ЭЖ ЭЗ ЭЙ ЭК ЭЛ ЭМ ЭН ЭО ЭП ЭР ЭС ЭТ ЭУ ЭФ ЭХ ЭЦ ЭЧ ЭШ ЭЭ ЭЯ
ЭЛА
ЭЛВ
ЭЛГ
ЭЛД
ЭЛЕ
ЭЛИ
ЭЛК
ЭЛЛ
ЭЛМ
ЭЛО
ЭЛП
ЭЛС
ЭЛУ
ЭЛЬ
ЭЛЮ
ЭЛЯ

Электроннооптический преобразователь (ЭОП), вакуумный фотоэлектронный прибор для преобразования невидимого глазом изображения объекта (в инфракрасных, ультрафиолетовых и рентгеновских лучах) в видимое либо для увеличения (усиления) яркости видимого изображения. В основе действия ЭОП лежит преобразование оптического или рентгеновского изображения в электронное, осуществляемое с помощью фотокатода, и затем электронного изображения в световое (видимое), получаемое на катодолюминесцептном экране (см. Катодолюминесценция, Люминофоры). В ЭОП (см. рис.) изображение объекта проецируется (с помощью объектива) на фотокатод (при использовании рентгеновских лучей теневое изображение объекта проецируется на фотокатод непосредственно). Излучение от объекта вызывает фотоэлектронную эмиссию с поверхности фотокатода, причём величина эмиссии с различных участков последнего изменяется в соответствии с распределением яркости спроецированного на него изображения. Фотоэлектроны ускоряются электрическим полем на участке между фотокатодом и экраном, фокусируются с помощью электрического или (и) магнитного поля (образующего электронную линзу) и бомбардируют экран, вызывая его люминесценцию. Интенсивность свечения отдельных точек экрана зависит от плотности потока фотоэлектронов, вследствие чего на экране возникает видимое изображение объекта. Различают ЭОП однои многокамерные (каскадные); последние представляют собой такое последовательное соединение двух или более однокамерных ЭОП, при котором световой поток с экрана первого ЭОП (каскада) направляется на фотокатод второго и т. д.

Структурная схема электроннооптического преобразователя: А — объект наблюдения; О — объектив; Ф — фотокатод; ФЭ — фокусирующий электрод; Э — люминесцентный экран; К — стеклянный или керамический корпус; стрелками показан ход лучей вне (оптических) и внутри (электронных) прибора. Электроннооптический преобразователь.

Структурная схема электроннооптического преобразователя: А — объект наблюдения; О — объектив; Ф — фотокатод; ФЭ — фокусирующий электрод; Э — люминесцентный экран; К — стеклянный или керамический корпус; стрелками показан ход лучей вне (оптических) и внутри (электронных) прибора.

  Основные характеристики ЭОП: 1) интегральная чувствительность (ИЧ) — отношение фототока к интенсивности падающего на фотокатод излучения; определяется главным образом свойствами используемого в ЭОП фотокатода; например, у ЭОП с кислородно-серебряно-цезиевым фотокатодом, применяемого для преобразования изображения в инфракрасных лучах (с длиной волн 0,78—1,5 мкм), ИЧ достигает 70 мка/лм; многощелочной фотокатод (состоит из соединений Sb с Cs и Sb с К и Na), используемый в ЭОП для усиления яркости видимого изображения, обеспечивает ИЧ до 106мка/лм; 2) разрешающая способность, определяемая максимальным количеством раздельно видимых штрихов изображения на участке экрана длиной 1 мм; лежит в пределах 25—60 и более штрихов на 1 мм; 3) коэффициент преобразования — отношение излучаемого экраном светового потока к лучистому потоку, падающему от объекта на фотокатод; у однокамерных ЭОП составляет несколько тыс., у каскадных — 106 и более.

  Основные недостатки каскадных ЭОП — малая разрешающая способность и сравнительно высокий темновой фон, приводящие к ухудшению качества изображения. Последний недостаток устранён в ЭОП с микроканальным усилителем, предложенным в 1940 советским инженером И. Ф. Песьяцким. В ЭОП этого типа на пути фотоэлектронов располагается стеклянная пластина, пронизанная множеством каналов диаметром 15—25 мкм; внутренние стенки каналов покрыты материалом с высоким коэффициентом вторичной электронной эмиссии. К пластине прикладывают напряжение в несколько кв, под действием которого попавшие в каналы фотоэлектроны ускоряются до энергий, достаточных для возникновения вторичной электронной эмиссии из стенок каналов, что позволяет усилить первичный электронный поток в 105—106 раз. Электроны из каждого канала попадают в соответствующую точку экрана, формируя видимое изображение. В микроканальных ЭОП отпадает необходимость применения электронной фокусировки.

  Большой вклад в разработку ЭОП различных типов внесли советские учёные П. В. Тимофеев, В. В. Сорокина, М. М. Бутслов и др.

  И. Ф. Усольцев.

ЭОП применяются в инфракрасной технике, спектроскопии, медицине, микробиологии, кинотехнике, ядерной физике и других областях науки и техники. В конце 40-х гг. с помощью инфракрасного ЭОП с длинноволновой границей чувствительности 1,1 мкм были сфотографированы спектр ночного неба и невидимая область центральной части нашей Галактики, что стимулировало широкое использование ЭОП в астрономии.

  Современные многокамерные ЭОП позволяют регистрировать на фотоэмульсии световые вспышки (сцинтилляции) от одного электрона, испускаемого входным фото-катодом. Но наряду с этим при наблюдениях слабых (слабоизлучающих или слабоосвещённых) небесных объектов возможно накопление сигналов о таких вспышках в памяти ЭВМ. Существуют спектральные приборы, работающие на этом принципе, которые одновременно регистрируют около тысячи элементов спектра небесного светила и столько же элементов спектров сравнения; способность к накоплению информации практически ограничивается объёмом памяти ЭВМ. Такие приборы обеспечивают существенный выигрыш при наблюдении слабых объектов на фоне свечения ночного неба.

  Этот выигрыш пропорционален , где h — квантовый выход приёмника (отношение числа фотоэлектронов к числу падающих квантов), t — время накопления. Посредством таких приборов может быть осуществлено суммирование изображений, получаемых с помощью нескольких телескопов.

  В некоторых типах ЭОП изображение регистрируется матрицей из электроночувствительных элементов (в количестве 10—100), установленной вместо люминесцентного экрана.

  П. В. Щеглов.

 

  Лит.: Зайдель И. Н., Куренков Г. И., Электронно-оптические преобразователи, М., 1970; Козелкин В. В., Усольцев И. Ф., Основы инфракрасной техники, 2 изд., М., 1974; Курс астрофизики и звездной астрономии, под ред. А. А. Михайлова, 3 изд., т. 1, М., 1973; Щеглов П. В., Электронная телескопия, М., 1963.

Так же Вы можете узнать о...


Хомяки (Cricetinae), подсемейство грызунов семейства хомякообразных.
Цивилис Клавдий Юлий (Claudius Julius Civilis), вождь союзного Риму германского племени батавов, поднявший в 69 антиримское восстание.
Чечено-Ингушская Автономная Советская Социалистическая Республика, Чечено-Ингушетия, в составе РСФСР.
Шебуев Василий Козьмич [2(13).4. 1777, Кронштадт, — 16(28).
Шумерля, город (с 1937) республиканского (АССР) подчинения, центр Шумерлинского района Чувашской АССР.
Электроннолучевая плавка, плавка в электроннолучевой печи, происходящая при высокой температуре и глубоком вакууме, что обеспечивает протекание многих реакций рафинирования, невозможных в иных условиях (например, при вакуумной дуговой плавке и индукционной плавке в тиглях из тугоплавких окислов).
Эфемеридное время, равномерная шкала времени, соответствующая фундаментальным законам динамики И.
«40 лет Вооружённых Сил СССР», медаль, см. в ст.
Азанде (народ в Африке) Азанде, санде, базенда, ньямньям (самоназвание азанде), народ, населяющий междуречье рек Узле и Мбому в Конго (столица Киншаса) и пограничные районы Центральноафриканской Республики и Судана.
Альварадо Монсон Бернардо Альварадо Монсон (Alvarado Monzon) Бернардо (р.