Интерферометр

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ИА ИБ ИВ ИГ ИД ИЕ ИЖ ИЗ ИИ ИЙ ИК ИЛ ИМ ИН ИО ИП ИР ИС ИТ ИУ ИФ ИХ ИЦ ИЧ ИШ ИЮ ИЯ
ИНА
ИНБ
ИНВ
ИНГ
ИНД
ИНЕ
ИНЁ
ИНЖ
ИНЗ
ИНИ
ИНК
ИНН
ИНО
ИНС
ИНТ
ИНУ
ИНФ
ИНХ
ИНЦ
ИНЧ
ИНЪ
ИНЫ
ИНЬ
ИНЮ
ИНЯ

Интерферометр, измерительный прибор, в котором используется интерференция волн. Существуют Интерферометр для звуковых и для электромагнитных волн: оптических (ультрафиолетовой, видимой и инфракрасной областей спектра) и радиоволн различной длины. Применяются Интерферометр весьма широко. Так, акустические Интерферометр и радиоинтерферометры используются для измерения скорости распространения волн (акустических и радио), для измерения расстояний между двумя излучателями волн или между излучателем и отражающим телом, т. е. применяются как дальномеры. Наибольшее распространение получили оптические Интерферометр, о которых пойдёт речь ниже. Они применяются для измерения длин волн спектральных линий, показателей преломления прозрачных сред, абсолютных и относительных длин, угловых размеров звёзд и пр., для контроля качества оптических деталей и их поверхностей, для контроля чистоты обработки металлических поверхностей и пр.

  Принцип действия всех Интерферометр одинаков, и различаются они лишь методами получения когерентных волн и тем, какая величина непосредственно измеряется. Пучок света с помощью того или иного устройства пространственно разделяется на два или большее число когерентных пучков (см. Когерентность), которые проходят различные оптические пути, а затем сводятся вместе. В месте схождения пучков наблюдается интерференционная картина (см. Интерференция света), вид которой, т. е. форма и взаимное расположение интерференционных максимумов и минимумов, зависит от способа разделения пучка света на когерентные пучки, от числа интерферирующих пучков, разности их оптических путей (оптической разности хода), относительной интенсивности, размеров источника, спектрального состава света.

  Методы получения когерентных пучков в Интерферометр очень разнообразны, поэтому существует большое число различных конструкций Интерферометр По числу интерферирующих пучков света оптические Интерферометр можно разбить на многолучевые и двухлучевые.

  Примером двухлучевого Интерферометр может служить Интерферометр Майкельсона (рис. 1). Параллельный пучок света источника L, попадая на полупрозрачную пластинку P1, разделяется на пучки 1 и 2. После отражения от зеркал M1 и M2 и повторного прохождения через пластинку P1 оба пучка попадают в объектив O2, в фокальной плоскости D которого они интерферируют. Оптическая разность хода D = 2(AC — AB) = 2l, где l — расстояние между зеркалом M2 и мнимым изображением M1¢ зеркала M1 в пластинке P1. Таким образом, наблюдаемая интерференционная картина эквивалентна интерференции в воздушной пластинке толщиной l. Если зеркало M1 расположено так, что M1¢ и M2 параллельны, то образуются полосы равного наклона, локализованные в фокальной плоскости объектива O2 и имеющие форму концентрических колец. Если же M2 и M1¢ образуют воздушный клин, то возникают полосы равной толщины, локализованные в плоскости клина M2M1¢ и представляющие собой параллельные линии.

Рис. 1. Схема интерферометра Майкельсона (P<sub>2</sub> пластинка, компенсирующая дополнительную разность хода, появляющуюся за счёт того, что луч 1 проходит дважды через пластинку P<sub>1</sub>). Интерферометр.

Рис. 1. Схема интерферометра Майкельсона (P2 пластинка, компенсирующая дополнительную разность хода, появляющуюся за счёт того, что луч 1 проходит дважды через пластинку P1).

  Интерферометр Майкельсона широко используется в физических измерениях и технических приборах. С его помощью впервые была измерена абсолютная величина длины волны света, доказана независимость скорости света от движения Земли (см. Майкельсона опыт). Перемещая одно из зеркал Интерферометр Майкельсона, получают возможность плавно изменять D, а зависимость интенсивности центрального пятна от D, в свою очередь, даёт возможность анализировать спектральный состав падающего излучения с разрешением 1/Dсм—1. На этом принципе построены Фурье-спектрометры (см. Фурье-спектроскопия), применяющиеся для длинноволновой инфракрасной области спектра (50—1000 мкм) при решении задач физики твёрдого тела, органической химии и химии полимеров, диагностики плазмы. Впервые получено разрешение ~ 0,005 см—1 в диапазоне длин волн 0,8—3,5 мкм на Фурье-спектрометре, разность хода в котором контролировалась и измерялась с помощью гелий-неонового газового лазера.

  Сочетание Интерферометр Майкельсона и призменного монохроматора (рис. 2, а) — компаратор интерференционный Кёстерса — применяется для абсолютного и относительного измерений длин концевых мер (измерительных плиток) сравнением их с длиной волны света или между собой с точностью » 0,025 мкм, а сочетание его с лазером (при стабилизации частоты ~ 2×10-9) позволяет с такой же абсолютной точностью измерять длины порядка 10 м. При замене плоских зеркал в Интерферометр Майкельсона отражающими триэдрами его используют для измерения углов с точностью до 10-6рад. Сочетание Интерферометр Майкельсона с микроскопом (микроинтерферометр В. П. Линника) позволяет по виду интерференционной картины определять величину и форму микронеровностей металлических поверхностей.

Рис. 2. а — схема интерферометра Кёстерса (обозначения те же, что в интерферометре Майкельсона; А — диспергирующая призма, К — концевая мера, S<sub>1</sub> — щель монохроматора); б — вид интерференционной картины. Интерферометр.

Рис. 2. а — схема интерферометра Кёстерса (обозначения те же, что в интерферометре Майкельсона; А — диспергирующая призма, К — концевая мера, S1 — щель монохроматора); б — вид интерференционной картины.

  Существуют двухлучевые Интерферометр, предназначенные для измерения показателей преломления газов и жидкостей, — интерференционные рефрактометры. Один из них — Интерферометр Жамена (рис. 3). Пучок света S после отражения от передней и задней поверхностей первой пластины P1 разделяется на два пучка S1 и S2. Пройдя через кюветы K1 и K2, пучки, отразившиеся от поверхностей пластины P2, попадают в зрительную трубу Т, где интерферируют, образуя полосы равного наклона. Если одна из кювет наполнена веществом с показателем преломления n1, а другая с n2, то по смещению интерференционной картины на число полос m по сравнению со случаем, когда обе кюветы наполнены одним и тем же веществом, можно найти Dn = n1 — n2 = =ml/l (l — длина кюветы).

Рис. 3. Схема интерферометра Жамена. Интерферометр.

Рис. 3. Схема интерферометра Жамена.

  Разновидностями Интерферометр Жамена являются Интерферометр Маха — Цендера и Интерферометр Рождественского (рис. 4), где используются две полупрозрачные пластинки P1 и P2 и два зеркала M1 и M2. В этих Интерферометр расстояние между пучками S1 и S2 может быть сделано очень большим, что облегчает установку в один из них различных исследуемых объектов, поэтому они широко применяются в аэрогазодинамических исследованиях.

Рис. 4. Схема интерферометра Рождественского. Интерферометр.

Рис. 4. Схема интерферометра Рождественского.

  В Интерферометр Рэлея (рис. 5) интерферирующие пучки выделяются с помощью двух щелевых диафрагм D. Пройдя кюветы K1 и K2, эти пучки собираются в фокальной плоскости объективом O2, где образуется интерференционная картина полос равного наклона, которая рассматривается через окуляр O3. При этом часть пучков, выходящих из диафрагм, проходит ниже кювет и образует свою интерференционную картину, расположенную ниже первой. Если показатели преломления n1 и n2 веществ в кюветах, то из-за разности хода в кюветах верхняя картина сместится относительно нижней. Измеряя величину смещения по числу полос m, можно найти Dn.

Рис. 5. а — схема интерферометра Рэлея; б — вид интерференционной картины. Интерферометр.

Рис. 5. а — схема интерферометра Рэлея; б — вид интерференционной картины.

  Точность измерения показателей преломления с помощью интерференционных рефрактометров очень высока и достигает 7-го и даже 8-го десятичного знака.

  Для измерения угловых размеров звёзд и угловых расстояний между двойными звёздами применяется звёздный Интерферометр Майкельсона (рис. 6). Свет от звезды, отразившись от зеркал M1, M2, M3, M4, образует в фокальной плоскости телескопа интерференционную картину. Угловое расстояние между соседними максимумами q = l/D (рис. 6, б). При наличии двух близких звёзд, находящихся на угловом расстоянии j, в телескопе образуются две интерференционные картины, также смещенные на угол j. Изменением D добиваются наихудшей видимости картины, что будет при условии j = 1/2q = l/2D, откуда можно определить j.

Рис. 6. а — схема звёздного интерферометра Майкельсона; б — вид интерференционных картин. Интерферометр.

Рис. 6. а — схема звёздного интерферометра Майкельсона; б — вид интерференционных картин.

  Многолучевой Интерферометр Фабри — Перо (рис. 7) состоит из двух стеклянных или кварцевых пластинок P1 и P2, на обращённые друг к другу и параллельные между собой поверхности которых нанесены зеркальные покрытия с высоким (85—98%) коэффициентом отражения. Параллельный пучок света, падающий из объектива O1, в результате многократных отражений от зеркал образует большое число параллельных, когерентных пучков с постоянной разностью хода между соседними пучками. В результате многолучевой интерференции в фокальной плоскости L объектива O2 образуется интерференционная картина, имеющая форму концентрических колец с резкими интенсивными максимумами, положение которых зависит от длины волны. Поэтому Интерферометр Фабри — Перо разлагает сложное излучение в спектр. Применяется Интерферометр Фабри — Перо как интерференционный спектральный прибор высокой разрешающей силы. Специальные сканирующие Интерферометр Фабри — Перо с фотоэлектрической регистрацией используются для исследования спектров в видимой, инфракрасной и сантиметровой областях длин волн. Разновидностью Интерферометр Фабри — Перо являются оптические резонаторы лазеров, излучающая среда которых располагается между зеркалами Интерферометр

Рис. 7. Схема интерферометра Фабри — Перо (S — источник света). Интерферометр.

Рис. 7. Схема интерферометра Фабри — Перо (S — источник света).

  К многолучевым Интерферометр также относятся различного рода дифракционные решётки, которые используются как интерференционные спектральные приборы.

 

  Лит.: Ландсберг Г. С., Оптика, 4 изд., M., 1957 (Общий курс физики, т. 3); Захарьевский А. Н., Интерферометры, М., 1952; Королёв Ф. А., Спектроскопия высокой разрешающей силы, М., 1953; Толанский С., Спектроскопия высокой разрешающей силы, пер. с англ., М., 1955; Инфракрасная спектроскопия высокого разрешения, пер. с франц., М., 1972; Жакино П., Последние достижения интерференционной спектроскопии, «Успехи физических наук», 1962, т. 78, с. 123.

  В. Интерферометр Малышев.

Так же Вы можете узнать о...


Крипта (от греч. kryptē — крытый подземный ход, тайник), 1) в Древнем Риме — любое сводчатое подземное или полуподземное помещение, 2) В средневековой западноевропейской архитектуре — часовня под храмом (обычно под алтарной частью), использовавшаяся как место для почётных погребений.
Курень (шалаш) Курень (тюрк.),1) на Украине — шалаш, сторожка (на огородах, бахчах и т.
Латук, салат (Lactuca), род растений семейства сложноцветных.
Лидзбарский Марк Лидзбарский (Lidzbarski) Марк (7.1.1868, Плоцк, Польша, — 13.
Луарская низменность, низменная равнина на западе Франции, в бассейне среднего и нижнего течения реки Луара.
Макдональд Жак Этьенн Жозеф Александр Макдональд (Macdonald) Жак Этьенн Жозеф Александр (17.
Масатенанго (Mazatenango), город на западе Гватемалы, административный центр департамента Сучитепекес.
Мелья Хулио Антонио Мелья (Mella) Хулио Антонио (настоящее имя — Никанор Мак-Парланд) (25.
Минимальные поверхности, поверхности, у которых средняя кривизна во всех точках равна нулю (см.
Монтгомери (город в США) Монтгомери (Montgomery), город на Ю. США, на р.
Мухаммед Гури, Муиз-ад-дин Мухаммад, Шихаб-ад-дин Мухаммад (г.
Национальный вопрос, совокупность политических, экономических, территориальных, правовых, идеологических и культурных отношений между нациями, национальными группами и народностями в различных общественно-экономических формациях.
Нилотские языки, группа языков на В. Африки, принадлежащая, по классификации американского учёного Дж.
Обмен телеграфный, суммарное количество телеграмм, принятых за определённый промежуток времени (час, сутки, месяц и т.