Квадратичное отклонениеБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Квадратичное отклонение, квадратичное уклонение, стандартное отклонение величин x1, x2,..., xn от а — квадратный корень из выражения Наименьшее значение Квадратичное отклонение имеет при а = В этом случае Квадратичное отклонение может служить мерой рассеяния системы величин x1, x2,..., xn. Употребляют также более общее понятие взвешенного Квадратичное отклонение числа p1,..., pn называют при этом весами, соответствующими величинам x1,..., xn. Взвешенное Квадратичное отклонение достигает наименьшего значения при а, равном взвешенному среднему: (p1x1 +... + pnxn)/(p1 +...+ pn). В теории вероятностей Квадратичное отклонение ох случайной величины Х (от её математического ожидания) называют квадратный корень из дисперсии Квадратичное отклонение употребляют как меру качества статистических оценок и называют в этом случае квадратичной ошибкой. См. Ошибок теория. |
||||||||||||||||||||||||||||||||||||||||||||||
|