Криоэлектроника

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
Сделать имплантацию зубов под ключ в Москве.

А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
КА КВ КЕ КЁ КЗ КИ КЙ КЛ КМ КН КО КП КР КС КТ КУ КХ КШ КЫ КЬ КЭ КЮ КЯ
КРА
КРЕ
КРЁ
КРЖ
КРИ
КРК
КРЛ
КРН
КРО
КРС
КРУ
КРЫ
КРЭ
КРЮ
КРЯ

Криоэлектроника, криогенная электроника, направление, охватывающее исследование взаимодействия электромагнитного поля с электронами в твёрдых телах при криогенных температурах (ниже 90К) и создание электронных приборов на их основе. В криоэлектронных приборах используются различные явления: сверхпроводимость металлов и сплавов, зависимость диэлектрической проницаемости некоторых диэлектриков от электрического поля, появление у металлов при Т < 80К полупроводниковых свойств при аномально высокой подвижности электронов проводимости и др.

  К криоэлектронным приборам следует отнести: запоминающие и логические криоэлектронные устройства вычислительной техники; генераторы, усилители, переключатели, резонаторы, детекторы, преобразователи частоты, фильтры, линии задержки, модуляторы и др. приборы СВЧ; сверхпроводящие магнитометры,гальванометры,болометры и др. Одной из задач Криоэлектроника является создание электронных охладителей, а также миниатюрных приборов, сочетающих в одной конструкции электронную схему, криостат, служащий герметической оболочкой, и охлаждающее устройство.

Криотроны. Развитие Криоэлектроника началось с создания криотрона (1955) — миниатюрного переключательного элемента, действие которого основано на явлении сверхпроводимости. Криотроны — элементы логических, запоминающих и переключательных устройств. Они отличаются низким потреблением энергии (10-18дж), малыми габаритами (до 10-6мм2), быстродействием (время переключения ~ 10-11сек). Первые проволочные криотроны были вскоре заменены плёночными (1958—1960). В 1955—56 появились др. плёночные запоминающие элементы: персистор, персистотрон, ячейка Кроу, однако они не получили распространения. Основным криоэлектронным элементом в вычислительной технике остался плёночный криотрон. В 1967 был разработан плёночный туннельный криотрон (криосар), основан на Джозефсона эффекте.

Криоэлектронныеусилители. Проблема приёма слабых сигналов СВЧ стимулировала появление низкотемпературных твердотельных усилителей, основанных на разных физических явлениях и обладающих ничтожно малыми шумами. К ним следует отнести прежде всего парамагнитный квантовый усилитель и параметрический усилитель, работающий при температуре 90K. В последнем роль активного элемента (параметрического полупроводникового диода) играет либо р—n-переход в полупроводнике с высокой подвижностью носителей при Т < 90К, либо переход металл — полуметалл (InSb, рис. 1). Последний приобретает при Т < 90К свойства полупроводника, имеющего подвижность носителей в 102—103 раз выше, чем у Ge и Si. Мощность, потребляемая таким усилителем, ~ 10-1— 10-2 вт.

Рис. 1. а — эквивалентная схема низкотемпературного параметрического усилителя; б — вольтамперная характеристика перехода металл—полуметалл (U — напряжение, I — ток) и зависимость его ёмкости С от напряжения при Т < 80 К; пунктиром показана эта же характеристика при комнатной температуре (300 К): U<sub>н</sub> и <span style='font-family:Symbol;layout-grid-mode:line'>w</span><sub>н</sub> — напряжение и частота накачки; в — переход металл—полуметалл является активным элементом усилителя. Криоэлектроника.

Рис. 1. а — эквивалентная схема низкотемпературного параметрического усилителя; б — вольтамперная характеристика перехода металл—полуметалл (U — напряжение, I — ток) и зависимость его ёмкости С от напряжения при Т < 80 К; пунктиром показана эта же характеристика при комнатной температуре (300 К): Uн и wн — напряжение и частота накачки; в — переход металл—полуметалл является активным элементом усилителя.

Сверхпроводниковый усилитель также основан на принципе параметрического усиления, но в этом случае периодически изменяется не ёмкость С колебательной системы, а её индуктивность L (рис. 2). Индуктивным элементом такого усилителя служит тонкая плёнка сверхпроводника при температуре несколько ниже Tkp. В сверхпроводящей плёнке возникает т. н. «сверхиндуктивность» Lкобусловленная кинетической энергией движущихся сверхпроводящих электронных пар. Индуктивность Lk при определённом выборе геометрии плёнки может преобладать над обычной индуктивностью L проводника. Внешним электромагнитным полем можно периодически разрушать и восстанавливать сверхпроводящие электронные пары, изменяя их число ns, и этим самым можно периодически изменять индуктивность Lkпо закону: Lk = 1/ns.

Рис. 2. а — схема сверхпроводящего усилителя; L — yправляемая индуктивность; R<sub>п</sub> — сопротивление перехода Джезефсона; б — активный элемент усилителя. Криоэлектроника.

Рис. 2. а — схема сверхпроводящего усилителя; L — yправляемая индуктивность; Rп — сопротивление перехода Джезефсона; б — активный элемент усилителя.

  Параэлектрические усилители основаны на аномально высокой поляризации некоторых диэлектриков (например, CrTiO3) при низких температурах. Диэлектрическая проницаемость таких диэлектриков (параэлектриков) от 10 до 15·103, при Т < 80К появляется сильная зависимость диэлектрических потерь от внешнего электрического поля (рис. 3). Активный элемент параэлектрического усилителя представляет собой электрический конденсатор, заполненный таким параэлектриком, помещенным в электромагнитное поле (накачка). Ёмкость такого конденсатора периодически изменяется с частотой накачки, что позволяет осуществить параметрическое усиление (рис. 4).

Рис. 3. Зависимость диэлектрической проницаемости <span style='font-family:Arial'>ε</span> и угла диэлектрических потерь <span style='font-family:Arial'>δ</span> от температуры Т. Криоэлектроника.

Рис. 3. Зависимость диэлектрической проницаемости ε и угла диэлектрических потерь δ от температуры Т.

Рис. 4. а — активный элемент параметрического усилителя; б — зависимость его ёмкости С от напряжения при Т = 4, 2 К, пунктир — эта же зависимость при комнатной температуре. Криоэлектроника.

Рис. 4. а — активный элемент параметрического усилителя; б — зависимость его ёмкости С от напряжения при Т = 4, 2 К, пунктир — эта же зависимость при комнатной температуре.

  Существуют усилители, в которых используются комбинации перечисленных методов. Например, сочетание изменяющихся индуктивности L сверхпроводника и ёмкости С «запертого» перехода металл — полуметалл позволяет создать усилитель, где одновременно от одного генератора модулируется С и L, что улучшает характеристики усилителей (рис. 5).

Рис. 5. Криоэлектронный усилитель с 4 управляемыми реактивными параметрами. Криоэлектроника.

Рис. 5. Криоэлектронный усилитель с 4 управляемыми реактивными параметрами.

  Количественным критерием чувствительности криоэлектронных усилителей является их шумовая температура Тш. У криоэлектронных усилителей она достигает единиц и долей градуса К (рис. 6). Наряду с этим криоэлектронные усилители обладают широкой полосой пропускания и высоким усилением (обычно от 10 до 104).

Рис. 6. Зависимость шумовой температуры Т<sub>ш</sub>, различных усилителей СВЧ от частоты: 1 — сверхмалошумящие электровакуумные (специальные типы ЛБВ) и полупроводниковые (туннельные и транзисторные) усилители; 2 — неохлаждаемые параметрические усилители; 3, 4, 5 — криоэлектронные усилители азотного, водородного и гелиевого уровней охлаждения; 6 — парамагнитные квантовые усилители. Криоэлектроника.

Рис. 6. Зависимость шумовой температуры Тш, различных усилителей СВЧ от частоты: 1 — сверхмалошумящие электровакуумные (специальные типы ЛБВ) и полупроводниковые (туннельные и транзисторные) усилители; 2 — неохлаждаемые параметрические усилители; 3, 4, 5 — криоэлектронные усилители азотного, водородного и гелиевого уровней охлаждения; 6 — парамагнитные квантовые усилители.

Криоэлектронные резонаторы. Повышение стабильности частоты генераторов СВЧ ограничено величиной добротности Qобъёмных резонаторов, которая зависит от активных потерь энергии в их проводящих стенках. Теоретически предел Q обычных резонаторов 2—8·103 для основного типа волн в сантиметровом диапазоне. Добротность может быть увеличена в 10—100 раз охлаждением до 15—20K за счёт уменьшения рассеяния электронов на тепловых колебаниях кристаллической решётки металла.

  Резонаторы со сверхпроводящими стенками теоретически должны обладать бесконечно большой добротностью из-за отсутствия потерь в поверхностном слое сверхпроводника. В действительности же потери существуют вследствие инерционности электронов. С другой стороны, на очень высоких частотах (~ 1011гц), когда энергия кванта электромагнитного поля сравнима с энергией расщепления сверхпроводящих электронных пар (3,52 k T), потери в сверхпроводящем и нормальном состояниях становятся одинаковыми. Поэтому наибольшая добротность (Q ~ 1011) достигается в дециметровом диапазоне длин волн. Для l = 3 см добротность сверхпроводящих резонаторов ~ 107—1010. С помощью сверхпроводящих резонаторов стабильность частоты обычных клистронов может быть улучшена с 5×10-4 до 10-9—10-10, т. е. до уровня стабильности квантовых стандартов частоты при сохранении всех преимуществ клистронов. Сверхпроводящие резонаторы обычно работают при гелиевых температурах (4,2 К). Если в них используются сверхпроводники 1-го рода, то их рабочая температура поднимается до 10—15 Криоэлектроника

Фильтры и линии задержки. Сверхпроводящий фильтр представляет собой цепочку последовательных соединений сверхпроводящих резонаторов. Избирательность в полосе запирания у такого фильтра повышена в 103—106 раз по сравнению с обычными фильтрами.

  Сверхпроводящая линия задержки в простейшем виде представляет собой тонкий кабель из сверхпроводника, свёрнутый в спираль и помещенный в криостат. Его длина соответствует времени задержки сигнала (t ~ мсек или долей мсек). Применяется в радиолокации и измерительной технике. Для t ~ нсек или псек используются сверхпроводящие меандры — извилистые линии из узких тонких сверхпроводящих плёнок на диэлектрической подложке. Изменяя внешним полем распределённую индуктивность такой линии, можно управлять временем задержки t. Применяются также параэлектрические фильтры и линии задержки.

Охлаждение в Криоэлектроника достигается различными методами. Криостат, который обычно служит оболочкой прибора, часто соединяют с криогенной установкой. Для охлаждения используются

также Джоуля — Томсона эффект, Пельтье эффект, Эттингсгаузена эффект, магнитное охлаждение и др. В приборах для космических исследований охлаждение и поддержание низких температур достигается за счёт использования отвердевших газов (1 кг твёрдого азота может находиться в космосе до 1 года).

  Иногда несколько приборов помещают в общий криостат, который может выполнять также определённые функции, например служить антенной. Т. о. осуществляют интеграцию. Развитие Криоэлектроника особенно интегральной, приводит к увеличению надёжности приборов, уменьшению их габаритов, веса и расширяет области их применения (рис. 7).

Рис. 7. Низкотемпературный параметрический усилитель для сверхдальнего приёма телевизионных сигналов через искусственные спутники Земли: 1 — криостат; 2 — колебательная система с активным элементом; 3 — генератор накачки; 4 — входной фильтр. Криоэлектроника.

Рис. 7. Низкотемпературный параметрический усилитель для сверхдальнего приёма телевизионных сигналов через искусственные спутники Земли: 1 — криостат; 2 — колебательная система с активным элементом; 3 — генератор накачки; 4 — входной фильтр.

 

  Лит.: Брэмер Д ж., Сверхпроводящие устройства, пер. с англ., М., 1964; Крайзмер Л. П., Устройства хранения дискретной информации, 2 изд., Л., 1969; Алфеев В. Н., Радиотехника низких температур, М., 1966; его же, Криогенная электроника, «Известия ВУЗОВ. Радиоэлектроника», 1970, т. 13, в. 10, с. 1163—1175; Электронная техника. Серия 15, Криогенная электроника, в. 1, М., 1969, с. 3; Малков М., Данилов И., Криогеника, М., 1970; Уильямс Дж., Сверхпроводимость и ее применение в технике, перевод с английского, М., 1973.

  В. Н. Алфеев.

Так же Вы можете узнать о...


Виленский конфликт 1920-39 Виленский конфликт 1920—39, конфликт между Польшей и Литвой из-за г.
Гапоненко Тарас Гурьевич [p. 20.2 (5.3).1906, деревня Статая Заворонь, ныне Смоленской обл.
Горьковский политехнический институт им. А. А.
Джанга, посёлок городского типа, центр Красноводского района Туркменской ССР.
Желтолозник, ива пурпурная (Salix purpurea), изящный тонкоствольный кустарник семейства ивовых высотой 2—4 м; см.
Импульсная модуляция ,модуляция колебаний, в результате которой гармонические колебания приобретают вид кратковременных радиоимпульсов, характеристики которых определяются формой модулирующего видеоимпульса (см.
Каратэ (япон., буквально — голыми руками), японская система самозащиты без оружия, основанная на ударах рукой (ребром ладони, кулаком, локтем) или ногой по наиболее уязвимым местам человеческого тела (солнечное сплетение, сонная артерия, печень, нервные узлы и др.
Койвисто, Бьёркё, прежнее название острова Большой Берёзовый в финском заливе.
Кремс (Krems), город в Австрии, в провинции Нижняя Австрия, на левом берегу Дуная, у выхода его из теснины Вахау.
Леонидов Иван Ильич [9(22).1.1902, хутор Власиха села Бабино, ныне Калининской области, — 6.
Мальва кормовая, однолетнее травянистое растение рода мальва, или просвирник, семейства мальвовых.
Миноранта (математическая) (франц. minorante, от minorer — объявлять меньшим), функция, значение которой не больше соответствующих значений данной функции.
Насонов Дмитрий Николаевич [28.6(10.7).1895, Варшава, — 21.
Ожерелье (город в Московской области) Ожерелье, город (до 1958 — посёлок) в Каширском районе Московской области РСФСР.
Пасторино Энрике Пасторино, Пасторино Вискарди (Pastorino Viscardi) Энрике (родился 6.
Полиспермия (от поли... и сперма),