Медные сплавы

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МЕА
МЕБ
МЕВ
МЕГ
МЕД
МЕЕ
МЕЖ
МЕЗ
МЕИ
МЕЙ
МЕК
МЕЛ
МЕМ
МЕН
МЕО
МЕП
МЕР
МЕС
МЕТ
МЕФ
МЕХ
МЕЦ
МЕЧ
МЕШ
МЕЩ

Медные сплавы, сплавы на основе меди. Медные сплавы — первые металлические сплавы, созданные человеком (см. Бронзовый век). Примерно до сер. 20 в. по мировому производству Медные сплавы занимали 1-е место среди сплавов цветных металлов, уступив его затем алюминиевым сплавам. Со многими элементами медь образует широкие области твёрдых растворов замещения, в которых атомы добавки занимают места атомов меди в гранецентрированной кубической решётке. Медь в твёрдом состоянии растворяет до 39 % Zn, 15,8 % Sn, 9,4 % Al, a Ni — неограниченно. При образовании твёрдого раствора на основе меди растут её прочность и электросопротивление, снижается температурный коэффициент электросопротивления, может значительно повыситься коррозионная стойкость, а пластичность сохраняется на достаточно высоком уровне. При добавлении легирующего элемента свыше предела растворимости образуются соединения, в частности электронные, т. е. характеризующиеся определённой электронной концентрацией (отношением суммарного числа валентных электронов к числу атомов, которое может быть равно 3/2, 21/13 или 7/4). Этим соединениям условно приписывают формулы CuZn, Cu5Sn, Cu31Sn8, Cu9Al4, CuBe и другие. В многокомпонентных Медные сплавы часто присутствуют сложные металлические соединения неустановленного состава, которые значительно твёрже, чем раствор на основе меди, но весьма хрупки (обычно в двухфазных и многофазных Медные сплавы доля их в структуре намного меньше, чем твёрдого раствора на основе меди).

  Медные сплавы получают сплавлением меди с легирующими элементами или с промежуточными сплавами — лигатурами, содержащими легирующие элементы. Для раскисления (восстановления окислов) широко применяют введение в расплав малых добавок фосфора (десятые доли %). Медные сплавы подразделяют на деформируемые и литейные. Из деформируемых Медные сплавы отливают (в изложницы или непрерывным методом) круглые и плоские слитки, которые подвергают горячей и холодной обработке давлением: прокатке, прессованию через матрицу или волочению для производства листов, лент, прутков, профилей, труб и проволоки. Медные сплавы хорошо обрабатываются давлением, и деформированные полуфабрикаты составляют основную долю всего объёма их производства. Литейные Медные сплавы обладают хорошими литейными свойствами, из них отливкой в земляные и металлические формы получают фасонные детали, а также декоративно-прикладные изделия и скульптуру (см. Бронза в искусстве).

  Механические свойства Медные сплавы изменяются в широких пределах при холодной обработке давлением и при отжиге. Холодной деформацией можно увеличить твёрдость и предел прочности Медные сплавы в 1,5—3 раза при одновременном снижении пластичности (см. Наклёп), а последующий рекристаллизационный отжиг позволяет частично или полностью (в зависимости от температуры и его продолжительности) восстановить исходные (до деформации) свойства (см. Термическая обработка). Смягчающий отжиг Медные сплавы после холодной обработки давлением проводят при 600—700 °С. Большинство Медные сплавы не подвергают упрочняющей термической обработке (закалке и старению), так как эта обработка или в принципе невозможна, если сплав при всех температурах однофазен, или величина упрочнения очень мала. Для создания термически упрочняемых Медные сплавы используют такие легирующие элементы, которые образуют с медью или между собой интерметаллические соединения (например, CuBe, NiBe, Ni3Al), растворимость которых в твёрдом растворе на базе меди с понижением температуры уменьшается. При закалке таких сплавов образуется пересыщенный твёрдый раствор, из которого при искусственном старении выделяются дисперсные интерметаллические соединения, упрочняющие Медные сплавы

  Медные сплавы подразделяют на латуни, бронзы и медно-никелевые сплавы. В латунях главной добавкой является цинк, в бронзах — любой элемент, кроме цинка и никеля. Промышленные марки выпускаемых в СССР Медные сплавы начинаются с первых букв их названий — Л (латуни), Бр. (бронзы) и М (медно-никелевые сплавы). Легирующие элементы обозначают следующими буквами: А — алюминий, Н — никель, О — олово, Ц — цинк, С — свинец, Ж — железо, Мц — марганец, К — кремний, Ф — фосфор, Т — титан. В марке простой (двойной) латуни цифры указывают ср. содержание меди. Например, латунь Л90 содержит 90 % Cu и 10 % Zn. В марке многокомпонентной латуни первые цифры указывают среднее содержание меди, а последующие — легирующих элементов. Например, латунь ЛАН59-3-2 содержит 59 % Cu, 3 % Al и 2 % Ni (остальное цинк). В марках бронз и медно-никелевых сплавов буквы и соответствующие им цифры указывают содержание легирующих элементов. Например, бронза Бр. АЖМц10-3-1,5 содержит 10 % Al, 3 % Fe и 1,5 % Mn. Буква Л в конце марки Медные сплавы обозначает, что он предназначен для фасонного литья (например, ЛК80-3Л). Состав, типичные механические свойства и примерное назначение Медные сплавы приведены в таблицах 1—3. Все Медные сплавы отличаются хорошей стойкостью против атмосферной коррозии. Кислород при комнатной температуре не действует на Медные сплавы; окись углерода с ними не реагирует. Незагрязнённый пар, сухой или влажный действует на бронзы очень слабо. Сероводород уже при незначительной влажности и особенно при повышенных температурах сильно реагирует с Медные сплавы Азотная и соляная кислоты действуют на латуни и оловянные бронзы очень сильно, серная — значительно слабее.

Таблица 1. — Состав, типичные механические свойства* и назначение латуней (1 Мн/м2» 0,1 кгс/мм2)

Марка сплава

Состав

Предел прочности sb, Мн/м2

Относительное удлинение d, %

Твердость HB, Мн/м2

Примерное назначение

Л96

95—97% Cu, остальное Zn

240

50

470

Радиаторные трубки

Л90

88—91% Cu, остальное Zn

260

45

530

Листы и ленты для плакировки

Л80

79—81% Cu, остальное Zn

320

52

540

Проволочные сетки и целлюлозно-бумажной промышленности, сильфоны

Л68

67—70% Cu, остальное Zn

320

55

550

Изделия, получаемые холодной штамповкой и глубокой вытяжкой

Л63

62—65% Cu, остальное Zn

330

49

560

Полосы, листы, лента, проволока, трубы, прутки

ЛА77-2

76—79% Cu, 1,75—2,5% Al, остальное Zn

400

55

600

Конденсаторные трубы

ЛАЖ60-1-1

58—61% Cu, 0,75—1,5% Al, 0,75—1,5% Fe, 0,1—0,6% Mn,  остальное Zn

450

45

950

Трубы и прутки

ЛАЖМц66-6-3-2

64—68% Cu, 6—7% Al,
2—4% Fe, 1,5—2,5% Mn,  остальное Zn

650

7

1600

Литые массивные червячные винты, гайки нажимных винтов

ЛАН59-3-2

57—60% Cu, 2,5—3,5% Al, 2—3% Ni, остальное Zn

380

50

750

Трубы и прутки

ЛЖМц59-1-1

57—60% Cu, 0,6—1,2% Fe, 0,5—0,8% Mn, 0,1—0,4% Al, 0,3—0,7% Sn, остальное Zn

450

50

880

Полосы, проволока, прутки и трубы

ЛН65-5

64—67% Cu, 5—6,5% Ni, остальное Zn

400

65

700

Манометрические трубки, конденсаторные трубы

ЛО70-1

69—71% Cu, 1—1,5% Sn, остальное Zn

350

60

590

Конденсаторные трубы, теплотехническая аппаратура

ЛС74-3

72—75% Cu, 2,4—3% Pb, остальное Zn

350

50

570

Детали часов, автомобилей

ЛК80-3Л

79—81% Cu, 2,5—4,5% Si, остальное Zn

300

20

1050

Арматура, подвергающаяся действию воды, детали судов

ЛКС80-3-3

79—80% Cu, 2,5—4,5% Si, 2—4% Pb, остальное Zn

350

20

950

Литые подшипники и втулки

* Свойства деформируемых латуней указаны для отожжённого состояния.

 

Таблица 2. — Состав, типичные механические свойства* и назначение бронз (1 Мн/м2» 0,1 кгс/мм2)

Марка сплава

Состав

Предел прочности sb, Мн/м2

Относительное удлинение d, %

Твердость HB, Мн/м2

Примерное назначение

Бр. ОФ10-1

9—11% Sn, 0,8—1,2% P

250

3

900

Подшипники, шестерни, венцы, втулки

Бр. ОФ4-0,25

3,5—4% Sn, 0,2—0,3% P

340

52

600

Трубки для манометрических пружин

Бр. ОЦС5-5-5

4—6% Sn,
4—6% Zn,
4—6% P

150

6

600

Антифрикционные детали и арматура

Бр. ОЦСН3-7-5-1

2,5—4% Sn, 6—9,5% Zn, 3—6% Pb, 0,5—2% Ni

180

8

600

Арматура, работающая в морской и пресной воде, в атмосфере пара

Бр. А7

6—8% Al

420

70

700

Пружины и пружинящие детали

Бр. АЖ9-4

8—10% Al,
2—4% Fe

600

40

1100

Шестерни, втулки, сёдла клапанов

Бр. АЖМц10-3-1,5

9—11% Al, 2,4% Fe,
1—2% Mn

610

32

1300

Шестерни, втулки, подшипники

Бр. АЖН10-4-4

9,5—11% Al, 3,5—5,5% Fe, 3,5—5,5% Ni

600

35

1500

Шестерни, сёдла клапанов

Бр. АМц9-2

8—10% Al, 1,5—2,5% Mn

400

25

1600

Детали морских судов, электрооборудования

Бр. Мц5

4,5—5,5% Mn

340

30

800

Поковки

Бр. Б2

1,9—2,2% Be, 0,2—0,5% Ni

1350

1,5

3500

Пружины и пружинящие детали в авиации и приборостроении

Бр. КН1-3

0,6—1,1% Si, 2,4—3,4% Ni, 0,1—0,4% Mn

600

12

1800

Направляющие втулки и другие детали ответственного назначения

Бр. С30

27—33% Pb

70

5

450

Сальники

* Свойства сплавов Бр. ОФ10-1, Бр. ОЦС5-5-5, Бр. ОЦСН3-7-5-1 и Бр. С30 указаны для отливок в земляные формы, сплавов Бр. Б2 и Бр. КН1-3 — для обработанных давлением изделий, подвергнутых закалке, соответственно при 780 и 850 °С и старению соответственно при 320 °С (2 ч) и 450 °С (4 ч), остальных сплавов — для отожжённого состояния после обработки давлением.

 

Таблица 3. — Состав, типичные механические свойства* и назначение медно-никелевых сплавов (1 Мн/м2» 0,1 кгс/мм2)

Марка и наименование сплава


Состав

Предел прочности sb, Мн/м2

Относительное удлинение d, %

Твердость HB, Мн/м2


Примерное назначение

МН19 (мельхиор)

18—20% Ni+Co

350

35

700

Изделия, получаемые штамповкой и чеканкой

МНЖМц30-0,8-1 (мельхиор)

29—33% Ni+Co,
0,8—1,3% Mn,
0,6—1% Fe

380

40

700

Конденсаторные трубы для судостроения, трубы термостатов

МНЦ15-20 (нейзильбер)

13,5—1,5% Ni+Co,
18—22% Zn

400

45

700

Детали приборов точной механики, посуда

МНМц43-0,5 (копель)

42,5—44% Ni+Co,
0,1—1% Mn

400

35

850

Проволока для термопар

МНМц40-1,5 (константан)

39—41% Ni+Co,
1—2% Mn

450

30

800

Проволока для реостатов, термопар

* Свойства указаны для отожжённого состояния.

 

  Медные сплавы используют как конструкционные, пружинные, антифрикционные и коррозионностойкие материалы, сплавы с высокой электрои теплопроводностью, с высоким электросопротивлением и низким термическим коэффициентом электросопротивления, сплавы для термопар, художественного литья и посуды. Медные сплавы применяют в общем машиностроении, авиа-, автои судостроении, на железнодорожном транспорте, в электротехнической промышленности, приборостроении, в производстве водяной и паровой арматуры и других изделий.

 

  Лит.: Бочвар А. А., Металловедение, 5 изд., М., 1956; Смирягин А. П., Промышленные цветные металлы и сплавы, 2 изд., М., 1956.

  И. И. Новиков.

Так же Вы можете узнать о...


Носов Николай Николаевич [р. 10(23). 11. 1908, Киев], русский советский писатель.
Пифагор Самосский Пифагор (Pythagoras) Самосский (около 570 — около 500 до н.
Резнатрон [англ. resnatron, от resonator — резонатор и (elec)tron — (элек)трон], лучевой тетрод, в котором электроды являются частью резонаторов, образующих входную и выходную колебательные системы.
Склера (от греч. skleros — твёрдый), белковая оболочка, белочная оболочка, наружная плотная соединительнотканная оболочка глаза, выполняющая опорную и защитную функции.
Темперамент (от лат. temperamentum — надлежащее соотношение частей), характеристика индивида со стороны динамической особенностей его психической деятельности, то есть темпа, ритма, интенсивности отдельных психических процессов и состояний.
Фитопатология (от фито... и патология), наука о болезнях растений, средствах и методах их профилактики и ликвидации.
Шаровой пояс, см. Шаровой слой.
Адриатическое море (от Adria — название греческой колонии 6 века до н.
Башкаус, река на Алтае, в Горно-Алтайском АО, левый приток р.
«Весёлые картинки», ежемесячный юмористический журнал для детей дошкольного возраста и первоклассников.
Говернадор-Валадарис (Governador Valadares), город на юго-востоке Бразилии, в штат Минас-Жерайс.
Дулова Вера Георгиевна [р. 14(27).1.1909, Москва], советская арфистка и педагог, народная артистка РСФСР (1966).
Каепутовое дерево (малайск. кайюпути, от кайю — дерево и пути — белый) (Melaleuca leucadendron), вечнозелёное дерево семейства миртовых, с белой корой и большими или малыми вертикально стоящими листьями.
Конфекцион (нем. Konfcktion, от лат. confectio — изготовление), готовое платье и бельё, магазин или отдел, торгующий им.
Ло Джон Ло (Law) Джон (21.4.1671, Шотландия, — 21.3.
Молочнокислое брожение, сбраживание углеводов молочнокислыми бактериями с образованием молочной кислоты.