Ректификация

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
РА РВ РД РЕ РЁ РЖ РИ РК РН РО РП РС РТ РУ РШ РЫ РЭ РЮ РЯ
РЕА
РЕБ
РЕВ
РЕГ
РЕД
РЕЕ
РЕЖ
РЕЗ
РЕИ
РЕЙ
РЕК
РЕЛ
РЕМ
РЕН
РЕО
РЕП
РЕР
РЕС
РЕТ
РЕУ
РЕФ
РЕХ
РЕЦ
РЕЧ
РЕШ
РЕЭ
РЕЮ
РЕЯ

Ректификация (от позднелатинского rectificatio — выпрямление, исправление), один из способов разделения жидких смесей, основанный на различном распределении компонентов смеси между жидкой и паровой фазами. При Ректификация потоки пара и жидкости, перемещаясь в противоположных направлениях (противотоком), многократно контактируют друг с другом в специальных аппаратах (ректификационных колоннах), причём часть выходящего из аппарата пара (или жидкости) возвращается обратно после конденсации (для пара) или испарения (для жидкости). Такое противоточное движение контактирующих потоков сопровождается процессами теплообмена и массообмена, которые на каждой стадии контакта протекают (в пределе) до состояния равновесия; при этом восходящие потоки пара непрерывно обогащаются более летучими компонентами, а стекающая жидкость — менее летучими. При затрате того же количества тепла, что и при дистилляции, Ректификация позволяет достигнуть большего извлечения и обогащения по нужному компоненту или группе компонентов. Ректификация широко применяется как в промышленном, так и в препаративном и лабораторном масштабах, часто в комплексе с др. процессами разделения, такими, как абсорбция,экстракция и кристаллизация.

Согласно Рауля законам и закону Дальтона, в условиях термодинамического равновесия концентрация какого-либо i-го компонента в паре в Ki раз отличается от концентрации его в жидкости, причём коэффициент распределения Ki = /p (где  — упругость насыщенного пара i-го компонента; р — общее давление). Отношение коэффициента распределения любых двух компонентов Ki и Kj называется относительной летучестью и обозначается aij. Чем больше отличается aij от единицы, тем легче выполнить разделение этих компонентов с помощью Ректификация В ряде случаев удаётся увеличить aijв результате введения в разделяемую смесь нового компонента (называемого разделяющим агентом), который образует с некоторыми компонентами системы азеотропную смесь. С этой же целью вводят растворитель, кипящий при значительно более высокой температуре, чем компоненты исходной смеси. Соответствующие процессы Ректификация называются азеотропными или экстрактивными. Величина aijзависит от давления: как правило, при понижении давления aij возрастает. Ректификация при пониженных давлениях — вакуумная — особенно подходит для разделения термически нестойких веществ.

Аппаратура для ректификации. Аппараты, служащие для проведения Ректификация, — ректификационные колонны — состоят из собственно колонны, где осуществляется противоточное контактирование пара и жидкости, и устройств, в которых происходит испарение жидкости и конденсация пара, — куба и дефлегматора. Колонна представляет собой вертикально стоящий полый цилиндр, внутри которого установлены т. н. тарелки (контактные устройства различной конструкции) или помещен фигурный кусковой материал — насадка. Куб и дефлегматор — это обычно кожухотрубные теплообменники (находят применение также трубчатые печи и роторные испарители).

  Назначение тарелок и насадки — развитие межфазной поверхности и улучшение контакта между жидкостью и паром. Тарелки, как правило, снабжаются устройством для перелива жидкости. Конструкции трёх типов переливных тарелок показаны на рис. 1 (а, б, в). В качестве насадки ректификационных колонн обычно используются кольца, наружный диаметр которых равен их высоте. Наиболее распространены кольца Рашига (рис. 2, 1) и их различные модификации (рис. 2,2—4).

Рис. 1. Схема тарелок с переливным устройством: а — колпачковая (1 — основание со слоем жидкости; 2 — патрубки для прохода пара; 3 — колпачки; 4, 5 — переливные устройства); б — из S-образных элементов (6); в — ситчатая. Ректификация.

Рис. 1. Схема тарелок с переливным устройством: а — колпачковая (1 — основание со слоем жидкости; 2 — патрубки для прохода пара; 3 — колпачки; 4, 5 — переливные устройства); б — из S-образных элементов (6); в — ситчатая.

Рис. 2. Различные типы насадок: 1 — кольца Рашига; 2 — спиральные кольца; 3 — кольца с перегородкой; 4 — кольца Паля. Ректификация.

Рис. 2. Различные типы насадок: 1 — кольца Рашига; 2 — спиральные кольца; 3 — кольца с перегородкой; 4 — кольца Паля.

Как в насадочных, так и в тарельчатых колоннах кинетическая энергия пара используется для преодоления гидравлического сопротивления контактных устройств и для создания динамической дисперсной системы пар — жидкость с большой межфазной поверхностью. Существуют также ректификационные колонны с подводом механической энергии, в которых дисперсная система создаётся при вращении ротора, установленного по оси колонны. Роторные аппараты имеют меньший перепад давления по высоте, что особенно важно для вакуумных колонн.

  По способу проведения различают непрерывную и периодическую Ректификация В первом случае разделяемая смесь непрерывно подаётся в ректификационную колонну и из колонны непрерывно отводятся две и большее число фракций, обогащенных одними компонентами и обеднённых другими. Схема потоков типичного аппарата для непрерывной Ректификация — полной колонны — показана на рис. 3, а. Полная колонна состоит из 2 секций — укрепляющей (1) и исчерпывающей (2). Исходная смесь (обычно при температуре кипения) подаётся в колонну, где смешивается с т. н. извлечённой жидкостью и стекает по контактным устройствам (тарелкам или насадке) исчерпывающей секции противотоком к поднимающемуся потоку пара. Достигнув низа колонны, жидкостный поток, обогащенный тяжелолетучими компонентами, подаётся в куб колонны (3). Здесь жидкость частично испаряется в результате нагрева подходящим теплоносителем, и пар снова поступает в исчерпывающую секцию. Выходящий из этой секции пар (т. н. отгонный) поступает в укрепляющую секцию. Пройдя её, обогащенный легко-летучими компонентами пар поступает в дефлегматор (4), где обычно полностью конденсируется подходящим хладагентом. Полученная жидкость делится на 2 потока: дистиллят и флегму. Дистиллят является продуктовым потоком, а флегма поступает на орошение укрепляющей секции, по контактным устройствам которой стекает. Часть жидкости выводится из куба колонны в виде т. н. кубового остатка (также продуктовый поток).

Рис. 3. Схемы потоков ректификационных колонн: а — непрерывная ректификация; б — периодическая ректификация; 1 — укрепляющая секция; 2 — исчерпывающая секция; 3 — куб колонны; 4 — дефлегматор. Ректификация.

Рис. 3. Схемы потоков ректификационных колонн: а — непрерывная ректификация; б — периодическая ректификация; 1 — укрепляющая секция; 2 — исчерпывающая секция; 3 — куб колонны; 4 — дефлегматор.

  Отношение количества флегмы к количеству дистиллята обозначается через R и носит название флегмового числа. Это число — важная характеристика Ректификация: чем больше R, тем больше эксплуатационные расходы на проведение процесса. Минимально необходимые расходы тепла и холода, связанные с выполнением какой-либо конкретной задачи разделения, могут быть найдены с использованием понятия минимального флегмового числа, которое находится расчётным путём в предположении, что число контактных устройств, или общая высота насадки, стремится к бесконечности.

  Если исходную смесь нужно разделить непрерывным способом на число фракций больше двух, то применяется последовательное либо параллельно-последовательное соединение колонн.

  При периодической Ректификация (рис. 3, б) исходная жидкая смесь единовременно загружается в куб колонны, ёмкость которого соответствует желаемой производительности. Пары из куба поступают в колонну и поднимаются к дефлегматору, где происходит их конденсация. В начальный период весь конденсат возвращается в колонну, что отвечает т. н. режиму полного орошения. Затем конденсат делится на флегму и дистиллят. По мере отбора дистиллята (либо при постоянном флегмовом числе, либо с его изменением) из колонны выводятся сначала легколетучие компоненты, затем среднелетучие и т. д. Нужную фракцию (или фракции) отбирают в соответствующий сборник. Операция продолжается до полной переработки первоначально загруженной смеси.

Основы расчёта ректификационных колонн. Ректификация с физико-химической точки зрения является сложным процессом противоточного тепломассообмена между жидкой и паровой фазами в условиях осложнённой гидродинамической обстановки. Именно такой подход к математическому описанию расчёта процесса развивается в связи с применением электронных цифровых вычислительных машин (ЦВМ).

  Всё же при количественном рассмотрении работы ректификационных колонн обычно используется концепция теоретической тарелки. Под такой тарелкой понимается гипотетическое контактное устройство, в котором устанавливается термодинамическое равновесие между покидающими его потоками пара и жидкости, т. е. концентрации компонентов этих потоков связаны между собой коэффициентом распределения. Любой реальной ректификационной колонне можно поставить в соответствие колонну с определённым числом теоретических тарелок, входные и выходные потоки которой как по величине, так и по концентрациям совпадают с потоками реальной колонны. Можно сказать, например, что данный реальный аппарат эквивалентен по своей эффективности колонне с пятью, шестью и т. н. теоретическими тарелками. Исходя из этого, можно определить т. н. кпд колонны как отношение числа теоретических тарелок, соответствующих этой колонне, к числу действительно установленных тарелок. Для насадочных колонн можно определить величину ВЭТТ (высоту, эквивалентную теоретической тарелке) как отношение высоты слоя насадки к числу теоретических тарелок, которым он эквивалентен по своему разделительному действию.

  С концепцией теоретической тарелки связана плодотворная идея отделения конструктивных и гидравлических параметров от технологических параметров, таких как отношения потоков и коэффициента распределения. Единая задача расчёта ректификационной колонны распадается при этом на две более простые, самостоятельные: а) технологический расчёт, когда нужно установить, какие составы будут получаться на фиксированном числе теоретических тарелок, или найти, сколько надо взять теоретических тарелок, чтобы получить желаемый состав выходящих потоков; б) расчёт, когда нужно установить, сколько взять реальных тарелок или какая высота насадки должна быть для реализации желаемого числа теоретических тарелок. В математическом отношении первая задача (а) допускает чёткую формулировку и сводится к решению обширной системы нелинейных алгебраических уравнений (для непрерывно действующих колонн) или к интегрированию систем обыкновенных дифференциальных уравнений (для периодических колонн). В случае Ректификация многокомпонентной смеси решение доступно лишь с помощью ЦВМ. Использование машин позволяет также рассчитывать сложные колонны, применение которых на практике в какой-то степени тормозилось ранее отсутствием точных методов расчёта. При гидравлическом расчёте (б) могут быть использованы либо непосредственно эмпирические корреляции между величинами ВЭТТ и кпд, с одной стороны, и конструкцией тарелки, типом насадки и гидравлическими параметрами (удельные нагрузки по пару и жидкости) — с другой, либо соотношения, связывающие ВЭТТ и кпд с кинетическими и диффузионными параметрами (такими, как коэффициент массоотдачи и эффективной диффузии).

  Основные области промышленного применения Ректификация — получение отдельных фракций и индивидуальных углеводородов из нефтяного сырья в нефтеперерабатывающей и нефтехимической промышленности, получение окиси этилена, акрилонитрила, капролактама, алкилхлорсиланов — в химической промышленности. Ректификация широко используется и в др. отраслях народного хозяйства: цветной металлургии, коксохимической, лесохимической, пищевой, химико-фармацевтической промышленностях.

 

  Лит.: Касаткин А. Г., Основные процессы и аппараты химической технологии, 8 изд., М., 1971; Александров И. А., Ректификационные и абсорбционные аппараты, 2 изд., М., 1971; Коган В. Б., Азеотропная и экстрактивная ректификация, 2 изд., М., 1971; Олевский В. М., Ручинский В. Ректификация, Ректификация термически нестойких продуктов, М., 1972; Платонов В. М., Берго Б. Г., Разделение многокомпонентных смесей. Расчёт и исследование ректификации на вычислительных машинах, М., 1965; Холланд Ч., Многокомпонентная ректификация, пер. с англ., М., 1969; Крель Э., Руководство по лабораторной ректификации, пер. с нем., М., 1960.

  В. М. Платонов, Г. Г. Филиппов.

Так же Вы можете узнать о...


Тайна государственная, см. Государственная тайна.
Хамсара (в верховьях — Чойган-Хем), река в Тувинской АССР, правый приток р.
Язвенник (Anthyllis), род растений семейства бобовых.
Би-1, ракетный самолёт; первый советский самолёт с жидкостным ракетным двигателем.
Геликоприон (от греч. hélix, родительный падеж hélikos — спираль и prion — пила) (Helicoprion), род ископаемых животных класса акулообразных рыб.
Желтощёк (Elopichthys bambusa), рыба семейства карповых.
Клинопись, способ письма путём выдавливания на глине комбинаций клиновидных чёрточек, применявшийся в Передней Азии.
Любимова Валентина Александровна [4(16).11.1895, село Шурово, ныне Московской области, — 26.
Нитротолуолы, продукты замещения атомов водорода в ядре толуола СбН5СН3 нитрогруппами —NO2.
Потенциальная энергия, часть общей механической энергии системы, зависящая от взаимного расположения частиц, составляющих эту систему, и от их положений во внешнем силовом поле (например, гравитационном; см.
Сидерический период обращения, промежуток времени, в течение которого какое-либо небесное тело-спутник совершает вокруг главного тела полный оборот относительно звёзд.
Триалетский хребет, горный хребет на С. Малого Кавказа (Грузинская ССР).
Честь и достоинство (правовая защита), охраняемые законом личные неимущественные и неотчуждаемые блага, означающие осознание лицом своего обществ.
Ангасские языки, см. Чадские языки.
Ван Тао (10.11.1828—1897), один из идеологических предшественников реформаторского движения в Китае.
Груп-тиэтр «» (The Group Theatre), американский драматический театр.