Относительности теория Принцип относительности и другие принципы инвариантности

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ОА ОБ ОВ ОГ ОД ОЖ ОЗ ОИ ОЙ ОК ОЛ ОМ ОН ОО ОП ОР ОС ОТ ОУ ОФ ОХ ОЦ ОЧ ОШ ОЩ ОЯ
ОТА
ОТБ
ОТВ
ОТГ
ОТД
ОТЕ
ОТЁ
ОТЖ
ОТЗ
ОТИ
ОТК
ОТЛ
ОТМ
ОТН
ОТО
ОТП
ОТР
ОТС
ОТТ
ОТХ
ОТЦ
ОТЧ
ОТШ
ОТЩ
ОТЪ
ОТЫ
ОТЯ

Принцип относительности и другие принципы инвариантности

В основе Относительности теория лежит принцип относительности, согласно которому в физической системе, приведённой в состояние свободного равномерного и прямолинейного движения относительно системы, условно называется «покоящейся», для наблюдателя, движущегося вместе с системой, все процессы происходят по тем же законам, что и в «покоящейся» системе. Говорят, что движущаяся система получается из «покоящейся» преобразованием движения и что принцип относительности выражает инвариантность (независимость) законов природы относительно преобразований движения.

  Справедливость принципа относительности означает, что различие между состояниями покоя и равномерного прямолинейного движения не имеет физического содержания. Если физическая система В движется равномерно и прямолинейно (со скоростью V ) относительно системы А, то с тем же правом можно считать, что А движется относительно В (со скоростью V). Термин «принцип относительности» связан с тем, что если преобразованию движения подвергнуть систему движущихся тел, то все относительные движения этих тел останутся неизменными.

  Наряду с принципом относительности из опыта известны и др. принципы инвариантности, или, как ещё говорят, симметрии, законов природы. Любой физический процесс происходит точно так же:

  если осуществить его в любой др. точке пространства; эта симметрия выражает равноправие всех точек пространства, однородность пространства;

  если систему, в которой происходит процесс, повернуть на произвольный угол; эта симметрия выражает равноправие всех направлений в пространстве, изотропию пространства;

  если повторить процесс через некоторый промежуток времени; эта симметрия выражает однородность времени.

  Т. о., имеет место инвариантность законов природы по отношению к четырём типам преобразований: 1) переносу в пространстве, 2) вращению в пространстве, 3) сдвигу во времени, 4) преобразованию движения. Симметрии 1—4 выполняются точно только в изолированной от внешних воздействий системе, т. е. если можно пренебречь воздействием на систему внешних факторов; для реальных систем они справедливы лишь приближённо.

  Изучение свойств преобразований 1—2 составляет предмет евклидовой геометрии трёхмерного пространства, если рассматривать её как физическую теорию, описывающую пространственные свойства физических объектов (при этом под переносом следует понимать преобразование параллельного переноса).

  При скоростях тел u, сравнимых со скоростью с, обнаруживается тесная связь и математическая аналогия между преобразованиями 1, 3 и 2, 4. Это даёт основание говорить об Относительности теория, в которой все преобразования 1—4 следует рассматривать совместно, как о геометрии пространства-времени. Содержанием Относительности теория является рассмотрение свойств преобразований 1—4 и следствий из соответствующих принципов инвариантности. Математически Относительности теория является обобщением геометрии Евклида — геометрией четырёхмерного Минковского пространства.

  Принцип относительности был известен (и справедлив) в классической механике, но свойства преобразований движения при u<<c и при u~c различны; при u<<с релятивистские эффекты исчезают и преобразования движения переходят в преобразования инвариантности, справедливые для классической механики (преобразования Галилея; см. Галилея принцип относительности). Поэтому различают релятивистский принцип относительности, обычно называют принципом относительности Эйнштейна, и нерелятивистский принцип относительности Галилея.

  Основное понятие Относительности теория — точечное событие, т.е. нечто, происходящее в данной точке пространства в данный момент времени (например, световая вспышка, распад элементарной частицы). Это понятие является абстракцией — реальные события всегда имеют некоторую протяжённость в пространстве и во времени и могут рассматриваться как точечные только приближённо. Любой физический процесс есть последовательность событий (С)—C1, C2,..., Сп,.... Справедливость симметрий 1—4 означает, что наряду с последовательностью (С) законы природы допускают существование бесконечного числа др. последовательностей (С *), которые получаются из (С) соответствующим преобразованием и различаются положением событий в пространстве и времени, но имеют одинаковую с (С) внутреннюю структуру. Например, в случае симметрии 4 процесс (С) можно наглядно описать как происходящий в стоящем на земле самолёте, а процесс (С *) — как такой же процесс, происходящий в самолёте, летящем с постоянной скоростью (относительно земли); различным скоростям и направлениям движения соответствуют различные последовательности (С *). Преобразования, переводящие одну последовательность событий в другую, называются активными (в отличие от пассивных преобразований, которые связывают координаты одного и того же события в двух системах отсчёта; см. ниже). Совокупность этих преобразований должна удовлетворять определённым свойствам. Прежде всего последовательное применение любых двух преобразований должно представлять собой одно из возможных преобразований [например, переход от системы (1) к системе (2), а затем от системы (2) к системе (3) эквивалентен переходу (1)—(3)]. Кроме того, для каждого преобразования должно существовать обратное преобразование, так что последовательное применение обоих преобразований даёт тождественное (единичное) преобразование, являющееся одним из возможных преобразований системы. Это означает, что совокупность рассматриваемых преобразований (1—4) должна составлять группу в математическом смысле. Эта группа называется группой Пуанкаре (название предложено Ю. Вигнером). Преобразования группы Пуанкаре носят универсальный характер: они действуют одинаково на события любого типа. Это позволяет считать, что они описывают свойства пространства-времени, а не свойства конкретных процессов. Свойства преобразований Пуанкаре могут быть описаны различными способами (так же, как можно описывать различными способами свойства движений в трёхмерном пространстве); наиболее простое описание получается при использовании инерциальных систем отсчёта и связанных с ними часов. Роль инерционных систем отсчёта (и. с. о.) в Относительности теория такая же, как роль прямоугольных декартовых координат в геометрии Евклида.

Относительности теория, физическая теория, рассматривающая пространственно-временные свойства физических процессов. Закономерности, устанавливаемые О. т., являются общими для всех физических процессов, поэтому часто о них говорят просто как о свойствах пространства-времени. Как было установлено А. Эйнштейном, эти свойства зависят от гравитационных полей (полей тяготения), действующих в данной области пространства-времени. Свойства пространства-времени при наличии полей тяготения исследуются в общей теории относительности (ОТО), называются также теорией тяготения. В частной теории относительности рассматриваются свойства пространства-времени в приближении, в котором эффектами тяготения можно пренебречь. Логически частная О. т. есть частный случай ОТО, откуда и происходит её название. Исторически развитие теории происходило в обратном порядке; частная О. т. была сформулирована Эйнштейном в 1905, окончательная формулировка ОТО была дана им же в 1916. Ниже излагается частная О. т., называется в литературе также теорией относительности Эйнштейна, просто О. т., или специальной теорией относительности (история её возникновения изложена в последнем разделе).

Основные черты теории относительности
Принцип относительности и другие принципы инвариантности
Инерциальные системы отсчёта
Преобразования Лоренца
Законы сохранения в теории относительности и релятивистская механика
Теория относительности и эксперимент
История частной теории относительности
Так же Вы можете узнать о...


Бар (единица давления) Бар (от греч. baros — тяжесть), внесистемная единица давления, равная 105н/м2 (ГОСТ 7664-61).
Беляк (жив.) Беляк (Lepus timidus), млекопитающее рода зайцев.
Ближневосточный кризис, обострение после 2-й мировой войны противоречий между силами империализма и силами прогресса в связи с агрессивными действиями империалистических держав против национально-освободительного движения народов Арабского Востока.
Брашов (город в центр. части Румынии) Брашов (Brasov), город в центральной части Румынии.
Вавилонский плен, период в истории древних евреев от взятия Иерусалима вавилонским царём Навуходоносором II и насильственного увода части евреев в Вавилонию (586 до н.
Венуолис Антанас Венуолис (псевдоним; настоящая фамилия Жукаускас) Антанас [26.
Включения в минералах, посторонние твердые, жидкие и газообразные тела, захваченные минералами при росте и заключённые внутри кристаллов.
«Временник императорского Московского общества истории и древностей российских», научно-историческое издание, выходившее в 1849—57 в Москве.
Ганджа, Гянджа, прежнее название города Кировабада в Азербайджанской ССР.
Герстнер Франтишек Антонин Герстнер (Gerstner) Франтишек Антонин (11.5.