Магнетронного типа приборы

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МАА
МАБ
МАВ
МАГ
МАД
МАЕ
МАЁ
МАЖ
МАЗ
МАИ
МАЙ
МАК
МАЛ
МАМ
МАН
МАО
МАП
МАР
МАС
МАТ
МАУ
МАФ
МАХ
МАЦ
МАЧ
МАШ
МАЭ
МАЮ
МАЯ

Магнетронного типа приборы, класс электровакуумных приборов СВЧ (300 Мгц — 300 Ггц), в которых движение электронов происходит в скрещенных постоянных электрических и магнитном полях и электромагнитном поле СВЧ, Магнетронного типа приборы используются для генерирования и усиления колебаний в радиолокационных и навигационных устройствах, устройствах космической связи, линейных ускорителях, медицинских аппаратах, установках нагрева токами СВЧ и т.д. В Магнетронного типа приборы постоянное электрическое поле создаётся в промежутке анод — катод (так называемое пространство взаимодействия), а постоянное магнитное полеперпендикулярно силовым линиям постоянного электрического поля и направлению движения электронов (в Магнетронного типа приборы цилиндрической конструкции — вдоль оси катода). Условия обратной связи между электромагнитным полем и электронным потоком, необходимые для самовозбуждения колебаний в Магнетронного типа приборы, легко выполняются. Благодаря обратной связи электроны, которые в результате взаимодействия с электромагнитным полем отдают ему часть своей энергии, приобретённой от источника постоянного напряжения, смещаются к аноду и в итоге попадают на него, а те электроны, которые отбирают от электромагнитного поля часть энергии, возвращаются на катод, бомбардируя его. Явление электронной бомбардировки используется в некоторых мощных Магнетронного типа приборы для поддержания необходимой температуры катода. Для осуществления эффективного и длительного взаимодействия электронов с электромагнитным полем должна соблюдаться синхронность их движения, то есть равенство скорости переносного движения электронов ve с фазовой скоростью бегущей волны поля.

  Магнетронного типа приборы обладают свойством многофункциональности, то есть эффективно работают в разных электрических режимах и условиях эксплуатации, и высоким кпд (до 90%); способны генерировать и усиливать колебания в весьма широкой области электромагнитных волн (от метровых до миллиметровых волн), генерировать колебания большой мощности (до нескольких сотен квт непрерывной и до нескольких десятков Мвт импульсной мощности) при относительно низких анодных напряжениях (до 50 кв), перестраиваться по частоте в широком диапазоне (до 20% механическим и до 100% электрическими способами), усиливать колебания в широкой полосе частот (до 20% и более) при достаточно больших коэффициентах усиления (до 20 дб и более).

  Прототипом всех Магнетронного типа приборы является многорезонаторный магнетрон — наиболее известный прибор этого класса (см. рис.).

  На магнетронном принципе взаимодействия электронного потока с электромагнитным полем создано множество разновидностей приборов (генераторов и усилителей), различающихся конструктивным исполнением замедляющих систем и устройств формирования электронного потока. В соответствии с этими признаками различают 3 семейства Магнетронного типа приборы: 1) с замкнутыми в кольцо замедляющей системой и электронным потоком (с катодом в пространстве взаимодействия); 2) с электрически разомкнутой замедляющей системой и замкнутым в кольцо электронным потоком (с катодом в пространстве взаимодействия); 3) с замкнутыми или разомкнутыми замедляющими системами и инжектированным электронным потоком (с катодом, вынесенным из пространства взаимодействия).

  К первому семейству приборов главным образом относятся: многорезонаторный магнетрон, или магнетрон бегущей волны, в котором замедляющая система обладает ярко выраженными резонансными свойствами, то есть колебания возбуждаются на дискретных частотах, рабочим видом колебаний является так называемый p-вид или p/2-вид, возможна перестройка частоты колебаний механическим или электрическим способом в небольших пределах (3—10%); коаксиальный магнетрон (разновидность многорезонаторного магнетрона) с перестройкой частоты (до 20%) и стабилизацией её посредством внешнего или внутреннего высокодобротного объёмного резонатора, аксиального с резонаторной системой магнетрона и возбуждаемого на волне типа H011; регенеративно-усилительный магнетрон, в котором возбуждение колебаний p-вида и управление их частотой осуществляется внешним сигналом малой мощности, вводимым обычно через циркулятор в сильно нагруженную резонаторную систему; магнетрон, настраиваемый напряжением (митрон), в котором сильно нагруженная колебательная система (обычно стержневого типа) обладает слабо выраженными резонансными свойствами и ток эмиссии катода ограничен, вследствие чего на малых уровнях мощности достигается перестройка частоты напряжением в широком диапазоне (до одной октавы и более).

  Ко второму семейству приборов главным образом относятся: карматрон — генератор обратной волны, в котором обычно используется замедляющая система стержневого типа (чаще типа «встречные штыри») с поглотителем энергии внутри и частота колебаний перестраивается напряжением; амплитрон — мощный усилитель обратной волны с согласованными входным и выходным устройствами и полосой усиливаемых частот до 10% от средней частоты (при отражениях энергии СВЧ на входе и выходе и температурном ограничении тока эмиссии амплитрон может работать как автогенератор с перестройкой частоты); стабилотрон — высокостабильный генератор с механической перестройкой частоты, состоящий из амплитрона, делителя мощности отражающего типа, фазовращателя и высокодобротного стабилизирующего резонаторалитературе часто встречается термин платинотрон как обобщённое название для амплитрона и стабилотрона); ультрон — усилитель прямой волны с более широкой полосой усиливаемых частот (до 20%) и более высоким коэфф. усиления (до 30 дб), чем у амплитрона.

  К третьему семейству приборов главным образом относятся: лампа обратной волны магнетронного типа (ЛОВМ) с перестройкой частоты генерируемых колебаний напряжением в широком диапазоне (до 20%); лампа бегущей волны магнетронного типа (ЛБВМ) с широкой полосой усиливаемых частот (до 20%) и высоким коэффициентом усиления (до 20 дб).

 

  Лит.: Электронные сверхвысокочастотные приборы со скрещенными полями, перевод с английского, т. 1—2. М., 1961; Лебедев И. В., Техника и приборы сверхвысоких частот, т. 2, М. — Л., 1972; ГОСТ 17104-71. Приборы магнетронного типа. Термины и определения, М., 1971.

  Д. Е. Самсонов.

Упрощённое изображение пространства взаимодействия магнетрона: а — распределение высокочастотного электрического поля при колебаниях <span style='font-family:Symbol;layout-grid-mode:line'>p</span>-вида; б — форма электронного облака при колебаниях <span style='font-family:Symbol;layout-grid-mode:line'>p</span>-вида. 1 — замедляющая система (анод); 2 — катод; 3 — граница электронного облака; 4 — форма траекторий электронов; <img src= — силовые линии постоянного электрического поля;  — силовые линии электрического поля СВЧ; В — силовые линии индукции магнитного поля; ve — скорость переносного движения электронов. Магнетронного типа приборы." alt="Упрощённое изображение пространства взаимодействия магнетрона: а — распределение высокочастотного электрического поля при колебаниях p-вида; б — форма электронного облака при колебаниях p-вида. 1 — замедляющая система (анод); 2 — катод; 3 — граница электронного облака; 4 — форма траекторий электронов;  — силовые линии постоянного электрического поля;  — силовые линии электрического поля СВЧ; В — силовые линии индукции магнитного поля; ve — скорость переносного движения электронов."

Упрощённое изображение пространства взаимодействия магнетрона: а — распределение высокочастотного электрического поля при колебаниях p-вида; б — форма электронного облака при колебаниях p-вида. 1 — замедляющая система (анод); 2 — катод; 3 — граница электронного облака; 4 — форма траекторий электронов;  — силовые линии постоянного электрического поля;  — силовые линии электрического поля СВЧ; В — силовые линии индукции магнитного поля; ve — скорость переносного движения электронов.

Так же Вы можете узнать о...


Зверообразные (Theromorpha, Synapsida), тероморфы, синапсиды, подкласс вымерших пресмыкающихся.
Караван [франц. caravane, от перс. кар (е) ван], 1) группа вьючных животных (верблюдов, ослов, мулов, редко лошадей), перевозящих грузы и людей (главным образом в пустынных районах).
Копильник, металлоприёмник в передней нижней части вагранки, где скапливается стекающий из горна расплавленный перегретый чугун; по мере надобности чугун выпускают через летку в ковш.
Лефевр Франсуа Жозеф Лефевр (Lefebvre) Франсуа Жозеф (20.10.1755, Руффак, Эльзас, — 14.
Мендисабаль Хуан Альварес Мендисабаль (Mendizabal) Хуан Альварес (25.2.
Неманская низменность, в бассейне верхнего и отчасти среднего течения Немана, главным образом в пределах Гродненской области БССР.
Памятник ,
Потребление, использование общественного продукта в процессе удовлетворения потребностей экономических, заключительная фаза процесса воспроизводства.
«Роман о Розе» («Roman de la Rose»), памятник французской средневековой литературы.
Скрытожаберные, скрытожаберники (Cryptobranchidae), семейство из отряда хвостатых земноводных.
Таловый, посёлок городского типа в Ростовской области РСФСР, подчинён Ленинскому райсовету г.
Унья, река в Коми АССР, левый приток Печоры.
Хох Питер де Хох, Хоох (de Hooch, de Hoogh) Питер де (крещен 20.
Эдисон Томас Алва Эдисон (Edison) Томас Алва (11.2.1847, Майлан, шт.
Александер Тунисский Харолд Руперт Леофрик Джордж Александер Тунисский (Alexander of Tunis) Харолд Руперт Леофрик Джордж (р.
Барсуков Михаил Михайлович [27.10(9.11).1901, деревня Сакулино, ныне Калининской области, — 22.
Валансьенн (угольный бассейн) Валансьенн, Нор и Па-де-Кале, самый крупный по запасам и добыче угольный бассейн Франции.