Рассеяние света

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
РА РВ РД РЕ РЁ РЖ РИ РК РН РО РП РС РТ РУ РШ РЫ РЭ РЮ РЯ
РАА
РАБ
РАВ
РАГ
РАД
РАЕ
РАЁ
РАЗ
РАИ
РАЙ
РАК
РАЛ
РАМ
РАН
РАО
РАП
РАР
РАС
РАТ
РАУ
РАФ
РАХ
РАЦ
РАЧ
РАШ

Рассеяние света, изменение характеристик потока оптического излучения (света) при его взаимодействии с веществом. Этими характеристиками могут быть пространственное распределение интенсивности, частотный спектр, поляризация света. Часто Рассеяние света называется только обусловленное пространственной неоднородностью среды изменение направления распространения света, воспринимаемое как несобственное свечение среды.

  Последовательное описание Рассеяние света возможно в рамках квантовой теории взаимодействия излучения с веществом, основанной на квантовой электродинамике и квантовых представлениях о строении вещества. В этой теории единичный акт Рассеяние света рассматривается как поглощение частицей вещества падающего фотона с энергией w, импульсом (количеством движения)k и поляризацией m, а затем испускание фотона с энергией w, импульсом k' и поляризацией m'. Здесь  — Планка постоянная, w и w' — частоты фотонов, каждая из величин k и k' — волновой вектор. Если энергия испущенного фотона равна энергии поглощённого (w= w'), Рассеяние света называется рэлеевским, или упругим. При w¹w' Рассеяние света сопровождается перераспределением энергии между излучением и веществом и его называют неупругим.

  Во многих случаях оказывается достаточным описание Рассеяние света в рамках волновой теории излучения (см. Излучение,Оптика). С точки зрения этой теории (называемой классической), падающая световая волна возбуждает в частицах среды вынужденные колебания электрических зарядов («токи»), которые становятся источниками вторичных световых волн. При этом определяющую роль играет интерференция света между падающей и вторичными волнами (см. ниже).

  Количественной характеристикой Рассеяние света и при классическом, и при квантовом описании является дифференциальное сечение рассеяния ds, определяемое как отношение потока излучения dl, рассеянного в малый элемент телесного угла dW, к величине падающего потока l0: ds = dl / l0. Полное сечение рассеяния s есть сумма ds по всем dW (сечение измеряют обычно в см2). При упругом рассеянии можно считать, что s — размер площадки, «не пропускающей свет» в направлении его первоначального распространения (см. Эффективное поперечное сечение). При классическом описании Рассеяние света часто пользуются матрицей рассеяния, связывающей амплитуды падающей и рассеянных по всевозможным направлениям световых волн и позволяющей учесть изменение состояния поляризации рассеянного света. Неполной, но наглядной характеристикой Рассеяние света служит индикатриса рассеяния — кривая, графически отображающая различие в интенсивностях света, рассеянного в разных направлениях.

  Вследствие обилия и разнообразия факторов, определяющих Рассеяние света, весьма трудно развить одновременно единый и детальный способ его описания для различных случаев. Поэтому рассматривают Идеализированные ситуации с разной степенью адекватности самому явлению.

  Рассеяние света отдельным электроном с большой точностью является упругим процессом. Его сечение не зависит от частоты (т. н. томсоновское Рассеяние света) и равно s = (8p/3) r20 = 6,65×10—25 см2(r0 = e2/mc2 — т. н. классический радиус электрона, много меньший длины волны света; е и m — заряд и масса электрона; с — скорость света в вакууме). Индикатриса рассеяния неполяризованного света в этом случае такова, что вперёд или назад (под углами 0° и 180°) рассеивается вдвое больше света, чем под углом 90°. Рассеяние света отдельными электронами — процесс, обычный в астрофизической плазме; в частности, оно ответственно за многие явления в солнечной короне и коронах др. звёзд.

  Основная особенность Рассеяние света отдельным атомом — сильная зависимость сечения рассеяния от частоты. Если частота w падающего света мала по сравнению с частотой w0 собственных колебаний атомных электронов (атомной линии поглощения), то s ~ w4, или l—4 (lдлина волны света). Эта зависимость, найденная на основе представления об атоме как об электрическом диполе, колеблющемся в поле световой волны, называется Рэлея законом. Вблизи атомных линий (w»w0) сечения резко возрастают, достигая в резонансе (w = w0) очень больших значений s»l2 ~ 10—10см2. Вследствие ряда особенностей резонансного Рассеяние света оно носит специальное название резонансной флуоресценции. Индикатриса рассеяния неполяризованного света атомами аналогична описанной для свободных электронов. Рассеяние света отдельными атомами наблюдается в разреженных газах.

  При Рассеяние света молекулами наряду с рэлеевскими (несмещенными) линиями в спектре рассеяния появляются, в отличие от случая атомарного Рассеяние света, линии неупругого Рассеяние света (смещенные по частоте). Относит. смещения ÷ww'ú/w ~ 10-3—10-5, а интенсивность смещенных линий составляет лишь 10-3—10-6 интенсивности рэлеевской. О неупругом Рассеяние света молекулами см. Комбинационное рассеяние света.

Рассеяние света мелкими частицами обусловливает широкий класс явлений, которые можно описать на основе теории дифракции света на диэлектрических частицах. Многие характерные особенности Рассеяние света частицами удаётся проследить в рамках строгой теории, разработанной для сферических частиц английским учёным А. Лявом (1889) и немецким учёным Г. Ми (1908, теория Ми). Когда радиус шара r много меньше длины волны света ln в его веществе, Рассеяние света на нём аналогично нерезонансному Рассеяние света атомом. Сечение (и интенсивность) Рассеяние света в этом случае сильно зависит от r и от разности диэлектрических проницаемостейe и e0 вещества шара и окружающей среды: s~ln—4r6(e-e0)(Рэлей, 1871). С увеличением r до r ~ lnи более (при условии e > 1) в индикатрисе рассеяния появляются резкие максимумы и минимумы — вблизи т. н. резонансов Ми (2r = mln, m = 1, 2, 3,...) сечения сильно возрастают и становятся равными 6pr 2, рассеяние вперёд усиливается, назад — ослабевает; зависимость поляризации света от угла рассеяния значительно усложняется.

  Рассеяние света большими частицами (r >>ln) рассматривают на основе законов геометрической оптики с учётом интерференции лучей, отражённых и преломленных на поверхностях частиц. Важная особенность этого случая — периодический (по углу) характер индикатрисы рассеяния и периодическая зависимость сечения от параметра r/ln. Рассеяние света на крупных частицах обусловливает ореолы,радуги,гало и др. явления, происходящие в аэрозолях, туманах и пр.

  Рассеяние света средами, состоящими из большого числа частиц, существенно отличается от Рассеяние света отдельными частицами. Это связано, во-первых, с интерференцией волн, рассеянных отдельными частицами, между собой и с падающей волной. Во-вторых, во многих случаях важны эффекты многократного рассеяния (переизлучения), когда свет, рассеянный одной частицей, вновь рассеивается другими. В-третьих, взаимодействие частиц друг с другом не позволяет считать их движения независимыми.

  Л. И. Мандельштам показал (1907), что принципиально необходимым для Рассеяние света в сплошной среде является нарушение её оптической однородности, при котором преломления показатель среды не постоянен, а меняется от точки к точке. В безграничной и полностью однородной среде волны, упруго рассеянные отдельными частицами по всем направлениям, не совпадающим с направлением первичной волны, взаимно «гасятся» в результате интерференции. Оптическими неоднородностями (кроме границ среды) являются включения инородных частиц, а при их отсутствии — флуктуации плотности, анизотропии и концентрации, которые возникают в силу статистической природы теплового движения частиц.

  Если фаза рассеянной волны однозначно определяется фазой падающей волны, Рассеяние света называется когерентным, в противном случае — некогерентным. По исторической традиции Рассеяние света отдельной молекулой (атомом) часто называется когерентным, если оно рэлеевское, и некогерентным, если оно неупруго. Такое деление условно: рэлеевское Рассеяние света может являться некогерентным процессом так же, как и комбинационное. Строгое решение вопроса о когерентности при Рассеяние света тесно связано с понятием квантовой когерентности и статистикой излучения. Резкое различие в пространственном распределении когерентно и некогерентно рассеянного света обусловлено тем, что при некогерентном Рассеяние света вследствие нерегулярного, случайного распределения неоднородностей в среде фазы вторичных волн случайны по отношению друг к другу; поэтому при интерференции не происходит полного взаимного гашения волн, распространяющихся в произвольном направлении.

  Впервые на Рассеяние света тепловыми флуктуациями (его называют молекулярным Рассеяние света) указал М. Смолуховский в 1908. Он развил теорию молекулярного Рассеяние света разреженными газами, в которых положение каждой отдельной частицы можно с хорошей степенью точности считать не зависящим от положений др. частиц, что и является причиной случайности фаз волн, рассеянных каждой частицей. Взаимодействием частиц между собой в ряде случаев можно пренебречь. Это позволяет считать, что интенсивность света, некогерентно рассеянного коллективом частиц, есть простая сумма интенсивностей света, рассеянного отдельными частицами. Суммарная интенсивность пропорциональна плотности газа. В оптических тонких средах (см. Оптическая толщина) Рассеяние света сохраняет многие черты, свойственные Рассеяние света отдельными молекулами (атомами). [В оптически плотных средах чрезвычайно существенным становится многократное рассеяние (переизлучение)]. Так, в атмосфере Земли сечение рассеяния солнечного света на флуктуациях плотности характеризуется той же зависимостью s ~ l—4, что и нерезонансное Рассеяние света отдельными частицами. Этим объясняется голубой цвет неба: высокочастотную (голубую) составляющую спектра лучей Солнца атмосфера рассеивает гораздо сильнее, чем низкочастотную (красную). Весьма сложна картина Рассеяние света при резонансной флуоресценции, когда в объёме l3 находится большое число частиц. В этих условиях коллективные эффекты становятся определяющими; Рассеяние света может происходить по необычному для газа типу, например приобретая характер металлического отражения от поверхности газа. Полная теория резонансной флуоресценции не разработана.

  Молекулярное Рассеяние света чистыми, без примесей, твёрдыми и жидкими средами отличается от нерезонансного Рассеяние света газами вследствие коллективного характера флуктуаций показателя преломления (обусловленных флуктуациями плотности и температуры среды при наличии достаточно сильного взаимодействия частиц друг с другом). Теорию упругого Рассеяние света жидкостями развил в 1910, исходя из идей Смолуховского, А. Эйнштейн. Эта теория основывалась на предположении, что размеры оптических неоднородностей в среде малы по сравнению с длиной волны света. Вблизи критических точек (см. Критическое состояние)фазовых переходов интенсивность флуктуаций значительно возрастает и размеры областей неоднородностей становятся сравнимы с длиной волны света, что приводит к резкому усилению Рассеяние света средой — опалесценции критической, осложнённой явлением переизлучения.

  В растворах дополнительной причиной Рассеяние света являются флуктуации концентрации; на поверхности раздела двух несмешивающихся жидкостей — флуктуации этой поверхности (Л. И. Мандельштам, 1913). Вблизи критических точек (точки осаждения в 1-м случае, точки расслоения — во 2-м) возникают явления, родственные критические опалесценции.

  Движение областей неоднородностей среды приводит к появлению в спектрах Рассеяние света смещенных по частоте линий. Типичным примером может служить Рассеяние света на упругих волнах плотности (гиперзвуке), подробно описанное в ст. Мандельштама — Бриллюэна рассеяние.

Всё сказанное выше относилось к Рассеяние света сравнительно малой интенсивности. В 60—70-е гг. 20 в. после создания сверхмощных источников оптического излучения узкого спектрального состава (лазеров) стало возможным изучение рассеяния чрезвычайно сильных световых потоков, которому оказались свойственны характерные отличия. Так, например, при резонансном рассеянии сильного монохроматического света на отдельном атоме вместо рэлеевских линий появляются дублеты (в данном случае свет рассеивается атомом, состояние которого уже изменено действием сильного электромагнитного поля). Др. особенность рассеяния сильного света заключается в интенсивном характере т. н. вынужденных процессов в веществе, резко меняющих характеристики Рассеяние света Подробно об этом см. в ст. Вынужденное рассеяние света и Нелинейная оптика.

Явление Рассеяние света чрезвычайно широко используется при самых разнообразных исследованиях в физике, химии, в различных областях техники. Спектры Рассеяние света позволяют определять молекулярные и атомные характеристики веществ, их упругие, релаксационные и др. постоянные. В ряде случаев эти спектры являются единственным источником информации о запрещенных переходах (см. Запрещенные линии) в молекулах. На Рассеяние света основаны многие методы определения размеров, а иногда и формы мелких частиц, что особенно важно, например, при измерении видимости атмосферной и при исследовании полимерных растворов (см. Нефелометрия,Турбидиметрия). Процессы вынужденного Рассеяние света лежат в основе т. н. активной спектроскопии и широко используются в лазерах с перестраиваемой частотой.

 

  Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Волькештейн М. В., Молекулярная оптика, М. — Л., 1951; Хюлст Г., Рассеяние света малыми частицами, пер. с англ., М., 1961; Фабелинский И. Л., Молекулярное рассеяние света, М., 1965; Пантел Р., Путхов Г., Основы квантовой электроники, пер. с англ., М., 1972.

  С. Г. Пржибельский.

Так же Вы можете узнать о...


Циклопы (сем. веслоногих рачков) Циклопы (Cyclopidae), семейство веслоногих рачков.
Амати (Amati), семья итальянских мастеров смычковых инструментов в г.
Ванкувер Джордж Ванкувер (Vancouver) Джордж (22.6.1758—10.5.
Давиденков Сергей Николаевич [13(25).8.1880, Рига, — 2.
Йошкар-Ола (до 1919 — Царёво-кокшайск, в 1919—27 — Красно-кокшайск), город, столица Марийской АССР.
Кускута, род растений семейства повиликовых; то же, что повилика.
Мосашвили Ило Онисимович (7.1. 1896, с. Чаргали, ныне Душетского района Грузинской ССР, — 4.
Пике (франц. pique, от piquer — простёгивать, прострачивать материю), ткань, вырабатываемая из хлопчатобумажной пряжи или химических волокон комбинированным переплетением.
Сантьяго-дель-Эстеро (провинция в Аргентине) Сантьяго-дель-Эстеро (Santiago del Estero), провинция на С.
Тесто, полупродукт в хлебопекарном, бараночном, кондитерском и макаронном производствах, а также при приготовлении мучных изделий в домашних условиях, образующийся при замешивании муки, воды, дрожжей, соли, сахара, масла и др.
Цивильный лист, в монархических государствах сумма, предусмотренная государственным бюджетом на личные расходы монарха и на содержание его двора.
Алюминотермия (от алюминий и греч. thérme — теплота), а люминотермический процесс, получение металлов и сплавов восстановлением окислов металлов алюминием (см.
Ван Ниль Корнелиус Бернардус, американский биохимик; см.
Гямыш, самая высокая вершина Малого Кавказа, на хребте Муровдаг (в Азербайджанской ССР).
Йитс Уильям Батлер Йитс, Йетс, Ейтс (Yeats) Уильям Батлер (13.6.
Курсограф (от курс и ...граф), навигационный прибор для автоматической записи курса судна во времени.
Морской полигон, район моря, выделенный для испытаний кораблей, различных видов оружия и боевой техники или для проведения боевой подготовки кораблей.
Пивденное, город (с 1963) в Харьковском районе Харьковской области УССР.