Термоядерные реакции

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ТА ТБ ТВ ТЕ ТЁ ТИ ТК ТЛ ТМ ТО ТР ТС ТУ ТХ ТЦ ТЧ ТШ ТЫ ТЬ ТЭ ТЮ ТЯ
ТЕА
ТЕБ
ТЕВ
ТЕГ
ТЕД
ТЕЖ
ТЕЗ
ТЕИ
ТЕЙ
ТЕК
ТЕЛ
ТЕМ
ТЕН
ТЕО
ТЕП
ТЕР
ТЕС
ТЕТ
ТЕУ
ТЕФ
ТЕХ
ТЕЧ
ТЕШ
ТЕЯ

Термоядерные реакции, ядерные реакции между лёгкими атомными ядрами, протекающие при очень высоких температурах (порядка 107 К и выше). Высокие температуры, то есть достаточно большие относительные энергии сталкивающихся ядер, необходимы для преодоления электростатического барьера, обусловленного взаимным отталкиванием ядер (как одноимённо заряженных частиц). Без этого невозможно сближение ядер на расстояние порядка радиуса действия ядерных сил, а следовательно, и «перестройка» ядер, происходящая при Термоядерные реакции Поэтому Термоядерные реакции в природных условиях протекают лишь в недрах звёзд, а для их осуществления на Земле необходимо сильно разогреть вещество ядерным взрывом, мощным газовым разрядом, гигантским импульсом лазерного излучения или бомбардировкой интенсивным пучком частиц.

  Термоядерные реакции, как правило, представляют собой процессы образования сильно связанных ядер из более рыхлых и потому сопровождаются выделением энергии (точнее, выделением в продуктах реакции избыточной кинетической энергии, равной увеличению энергии связи). При этом сам механизм этого «экзоэнергетического» сдвига к средней части периодической системы элементов Менделеева здесь противоположен тому, который имеет место при делении тяжёлых ядер: почти все практически интересные Термоядерные реакции — это реакции слияния (синтеза) лёгких ядер в более тяжёлые. Имеются, однако, исключения: благодаря особой прочности ядра 4He (a-частица) возможны экзоэнергетические реакции деления лёгких ядер (одна из них, «чистая» реакция 11B + р ® 34Не + 8,6 Мэв, привлекла к себе интерес в самое последнее время).

Большое энерговыделение в ряде Термоядерные реакции обусловливает важность их изучения для астрофизики, а также для прикладной ядерной физики и ядерной энергетики. Кроме того, чрезвычайно интересна роль Термоядерные реакции в дозвёздных и звёздных процессах синтеза атомных ядер химических элементов (нуклеогенеза).

Скорости Термоядерные реакции В табл. 1 для ряда Термоядерные реакции приведены значения энерговыделения, основной величины, характеризующей вероятность Термоядерные реакции — её максимального эффективного поперечного сечения (sмакс, и соответствующей энергии налетающей (в формуле реакции — первой слева) частицы.

  Главная причина очень большого разброса сечений Термоядерные реакции — резкое различие вероятностей собственно ядерных («послебарьерных») превращений. Так, для большинства реакций, сопровождающихся образованием наиболее сильно связанного ядра 4He, сечение велико, тогда как для реакций, обусловленных слабым взаимодействием (например, р + р ®  D + е+ + n), оно весьма мало.

  Термоядерные реакции происходят в результате парных столкновений между ядрами, поэтому число их в единице объёма в единицу времени равно n1n2<vs(v) >, где n1, n2 — концентрации ядер 1-го и 2-го сортов (если ядра одного сорта, то n1n2 следует заменить на n2), v — относительная скорость сталкивающихся ядер, угловые скобки означают усреднение по скоростям ядер v [распределение которых в дальнейшем принимается максвелловским (см. Максвелла распределение)].

  Температурная зависимость скорости Термоядерные реакции определяется множителем < vs(v) >. В практически важном случае «не очень высоких» температур T < (107¸108) К она может быть приближённо выражена в виде, одинаковом для всех Термоядерные реакции В этом случае относительные энергии Е сталкивающихся ядер, как правило, значительно ниже высоты кулоновского барьера (последняя даже для комбинации ядер с наименьшим зарядом z = 1 составляет ~ 200 Кэв, что соответствует, по соотношению E = kT, T ~ 2×109 K) и, следовательно, вид s(v) определяется в основном вероятностью «туннельного» прохождения сквозь барьер (см. Туннельный эффект), а не собственно ядерным взаимодействием, в ряде случаев обусловливающим «резонансный» характер зависимости s(v) (именно такая зависимость проявляется в наибольших из значений sмакс в таблице 1). Результат имеет вид < vs(v) > = const×Т-2/3ехр} ,

где const — постоянная, характерная для данной реакции, Z1, Z2 — заряды сталкивающихся ядер,  — их приведённая масса, е — заряд электрона,  — Планка постоянная, k — Больцмана постоянная.

Таблица 1

 

Реакция

Энерговыделение, Мэв  

sмакс, барн (в области энергий £1 Мэв)

Энергия налетающей частицы, соответствующая sмакс, Мэв

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

p + p ® D + e+ + v

p + D ®3He + g

p + T ®4He + g

D + D ® T + P

D + D ®3He + n

D + D ®4He + g

D + T ®4He + n

T + D ®4He + n

T + T ®4He + 2n

D + 3He ®4He + p

3Не+ 3Не ®4Не+2р

n + 6Li ®4He + T

p + 6Li ®4He + 3He

p + 7Li ® 24He + g

D + 6Li ®7Li + p

D + 6Li ® 24He

D + 7Li ® 24He + n

p + 9Be ® 24He + D

p + 9Be ®6Li + 4He

p + 11B ® 34He

p + 15N ®12C + 4He

2,2

5,5

19,7

4,0

3,3

24,0

17,6

17,6

11,3

18,4

12,8

4,8

4,0

17,3

5,0

22,4

15,0

0,56

2,1

8,6

5,0

10-23

10-6

10-6

0,16 (при 2 Мэв)

0,09

5,0

5,0

0,10

0,71

2,6

10-4

6×10-3

0,01

0,026

10-3

0,46

0,35

0,6

0,69 (при 1,2 Мэв)

2,0

1,0

0,13

0,195

1,0

0,47

0,26

0,3

0,44

1,0

0,60

0,2

0,33

0,33

0,675

1,2

p — протон, D — дейтрон (ядро дейтерия 2H), Т — тритон (ядро трития 3H), n — нейтрон, е+ — позитрон, v — нейтрино, g фотон.

Термоядерные реакции во Вселенной играют двоякую роль — как основной источник энергии звёзд и как механизм нуклеогенеза. Для нормальных гомогенных звезд, в том числе Солнца, главным процессом экзоэнергетического ядерного синтеза является сгорание Н в Не, точнее, превращение 4 протонов в ядро 4He и 2 позитрона. Этот результат можно получить двумя путями (Х. Бете и др., 1938—39): 1) в протон — протонной (рр) цепочке, или водородном цикле; 2) в углеродно-азотном (CN), или углеродном, цикле (таблицы 2 и 3).

  Первые 3 реакции входят в полный цикл дважды. Времена реакций рассчитаны для условий в центре Солнца: Т = 13 млн К (по другим данным — 16 млн К), плотность Н — 100 г /см3. В скобках указана часть энерговыделения, безвозвратно уходящая с n.

  В CN-цикле ядро 12С играет роль катализатора. Для Солнца и менее ярких звёзд в полном энерговыделении преобладает рр-цикл, а для более ярких звёзд — CN-цикл. Табл. 2. — Водородный цикл

Реакция

Энерговыделение, Мэв

Среднее время реакции

р + р ® D+e+ + v е+ + е®2g p + D ®3He + g 3Не + 3Не ®4Не+2р

2×0,164 + (2×0,257) 2×1,02 2×5,49 12,85

1,4×1010лет — 5,7 сек 106 лет

Итого 4p ®4He + 2e+

26,21 + (0,514)

 

  Водородный цикл разветвляется на 3 варианта. При достаточно больших концентрациях 4He и T > (10 ¸ 15) млн К, в полном энерговыделении начинает преобладать др. ветвь рр-цикла, отличающаяся от приведённой в таблице 2 заменой реакции 3He + 3He на цепочку: 3He + 4He ®7Be + g, 7Be + e®7Li + g, p + 7Li ® 24He,

а при ещё более высоких Т — третья ветвь: 3He + 4He ®7Be + g, р + 7Ве ®8В + g, 8B ®8Be + e+ + n, 8Be ® 24He.

  Для звёзд-гигантов с плотными выгоревшими (по содержанию Н) ядрами существенны гелиевый и неоновый циклы Термоядерные реакции; они протекают при значительно более высоких температурах и плотностях, чем рри CN-циклы. Основной реакцией гелиевого цикла, идущей, начиная с T» 200 млн К, является так называемый процесс Солпитера: 34He ®12C + g1 + g2 + 7,3 Мэв (процесс не строго тройной, а двухступенчатый, идущий через промежуточное ядро 8Be). Далее могут следовать реакции 12C +4Не ®16O + g, 16O + 4He ®20Ne + g; в этом состоит один из механизмов нуклеогенеза. Возможность процесса Солпитера, а тем самым и нуклеогенеза большинства элементов (предпосылка возникновения всех форм жизни!) связана с таким случайным обстоятельством, как большая «острота» резонанса в ядерной реакции 34Не ®12С, обеспечиваемая наличием подходящего дискретного уровня энергии у ядра 8Be.

  Если продукты реакций гелиевого цикла вступят в контакт с Н, то осуществляется неоновый (Ne—Na) цикл, в котором ядро 20Ne играет роль катализатора для процесса сгорания Н в Не. Последовательность реакций здесь вполне аналогична CN-циклу (табл. 3), только ядра 12C, 13N, 13C, 14N, 15O, 15N заменяются соответственно ядрами20Ne, 21Na, 21Ne, 22Na, 23Na, 23Mg. Табл. 3. — Углеродный цикл

Реакция

Энерговыделение, Мэв

Среднее время реакции

р + 12С ®13N + g

1,95

1,3×107лет

13N ®13С + е+ + v

1,50(0,72)

7,0 мин

р + 13С ®14N + g

7,54

2,7×106лет

р + 14N ®15O + g

7,35

3,3×108лет

15O ®15N + e+ +v

1,73 + (0,98)

82 сек

р + 15N ®12С + 4Не

4,96

1,1×105 лет

Итого 4р ®4Не + 2е+

25,03 + (1,70)

 

  Мощность этого цикла как источника энергии невелика. Однако он, по-видимому, имеет большое значение для нуклеогенеза, так как одно из промежуточных ядер цикла (21Ne) может служить источником нейтронов: 21Ne + 4He ®24Mg + n (аналогичную роль может играть и ядро С, участвующее в CN-цикле). Последующий «цепной» захват нейтронов, чередующийся с процессами b--распада, является механизмом синтеза всё более тяжёлых ядер.

  Средняя интенсивность энерговыделения e в типичных звёздных Термоядерные реакции по земным масштабам ничтожна. Так, для Солнца (в среднем на 1 г солнечной массы) . Это гораздо меньше, например, скорости энерговыделения в живом организме в процессе обмена веществ. Однако вследствие огромной массы Солнца (2×1033г) полная излучаемая им мощность (4×1026вт) чрезвычайно велика (она соответствует ежесекундному уменьшению массы Солнца на ~ 4 млн. т) и даже ничтожной её доли достаточно, чтобы оказывать решающее влияние на энергетический баланс земной поверхности, жизни и т. д.

  Из-за колоссальных размеров и масс Солнца и звёзд в них идеально решается проблема удержания (в данном случае — гравитационного) и термоизоляции плазмы: Термоядерные реакции протекают в горячем ядре звезды, а теплоотдача происходит с удалённой и гораздо более холодной поверхности. Только поэтому звёзды могут эффективно генерировать энергию в таких медленных процессах, как рри CN-циклы (табл. 2 и 3). В земных условиях эти процессы практически неосуществимы; например, фундаментальная реакция   р + p ® D + е+ + n непосредственно вообще не наблюдалась.

Термоядерные реакции в земных условиях. На Земле имеет смысл использовать лишь наиболее эффективные из Термоядерные реакции, связанные с участием изотопов водорода D и Т. Подобные Термоядерные реакции в сравнительно крупных масштабах осуществлены пока только в испытательных взрывах термоядерных, или водородных бомб (см. Ядерное оружие). Энергия, высвобождающаяся при взрыве такой бомбы (1023— 1024эрг), превышает недельную выработку электроэнергии на всём земном шаре и сравнима с энергией землетрясений и ураганов. Вероятная схема реакций в термоядерной бомбе включает Термоядерные реакции 12, 7, 4 и 5 (табл. 1). В связи с термоядерными взрывами обсуждались и др. Термоядерные реакции, например 16,14, 3.

  Путём использования Термоядерные реакции в мирных целях может явиться управляемый термоядерный синтез (УТС), с которым связывают надежды на решение энергетических проблем человечества, поскольку дейтерий, содержащийся в воде океанов, представляет собой практически неисчерпаемый источник дешёвого горючего для управляемых Термоядерные реакции Наибольший прогресс в исследованиях по УТС достигнут в рамках советской программы «Токамак». Аналогичные программы к середине 70-х гг. 20 в. стали энергично развиваться и в ряде др. стран. Для УТС наиболее важны Термоядерные реакции 7,5 и 4 [а также 12 для регенерации дорогостоящего Т]. Независимо от энергетических целей термоядерный реактор может быть использован в качестве мощного источника быстрых нейтронов. Однако значительное внимание привлекли к себе и «чистые» Термоядерные реакции, не дающие нейтронов, например 10, 20 (табл. 1).

 

  Лит.: Арцимович Л. А., Управляемые термоядерные реакции, 2 изд., М., 1963; Франк-Каменецкий Д. А., Физические процессы внутри звезд, М., 1959; Термоядерные реакции, в кн.: Проблемы современной физики, М., 1954, в. 1; Fowler W. A., Caughlan G. R., Zimmerman В. A., «Annual Review of Astronomy and Astrophysics», 1967, v. 5, p. 525.

  В. И. Коган.

Так же Вы можете узнать о...


Раёшник ,
Табуляты (Tabulata), подкласс вымерших коралловых полипов.
Частное определение, в советском процессуальном праве специальное определение суда.
Аффанди Кусума Аффанди (Affandi) Кусума (р. 1910, Черибон, Ява), индонезийский живописец и график.
ГДР (DDR), сокращённое название Германской Демократической Республики.
«Измарагд» (от греч. smaragdos — изумруд), русский нравоучительный сборник 14 века.
Ла-Мут (La Mouthe), пещера близ г. Монтиньяк на Юге Франции (департамент Дордонь).
Нерчинск, город, центр ого района Читинской области РСФСР.
Пьезомагнетизм (от греч. piezo — давлю и магнетизм), пьезомагнитный эффект, возникновение в веществе намагниченности под действием внешнего давления.
Сурикат (Suricata suricata), хищное млекопитающее семейства виверровых.
Цилле Генрих Цилле (Zille) Генрих (10.1.1858, Радебург, Саксония, — 9.
Ассизы (позднелат. assisae — заседания),
Гаметофит (от гаметы и греч. phyton — растение), половое поколение у растений с чередованием поколений.
Зухайр ибн Аби Сульма Рабиа аль-Музани (530—627), арабский поэт.
Кураминский хребет, горный хребет на З. Тянь-Шаня, по границе Таджикской ССР и Узбекской ССР.
Негели Карл Вильгельм Негели (Nageli) Карл Вильгельм (27.3.1817, Кильхберг, близ Цюриха, — 10.