Топология 4. Кусочно-линейная топологияБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
4. Кусочно-линейная топология Подмножество Р Î Подмножество ХÎ а) симплекс, вершины которого определённым образом упорядочены, называется упорядоченным симплексом данной триангуляции (или симплициальной схемы) К; формальные линейные комбинации упорядоченных симплексов данной размерности n с коэффициентами из данной группы G называются n-мepными цепями; все они естественным образом составляют группу, которая обозначается символом C n(K; G); б) выбросив из упорядоченного n-мерного симплекса s вершину с номером i, 0 £ i £ n, получим упорядоченный (n—1)-мерный симплекс, который обозначается символом s(i); цепь в) цепи с, для которых г) цепи вида д) доказывается, что Bn(K; G)ÌZn(K; G) (граница является циклом); поэтому определена факторгруппа Hn(K; G)=Zn(K; G)/ Bn(K; G). Оказывается, что группа Hn(K; G) изоморфна группе гомологий Hn(X; G) полиэдра X, триангуляцией которого является К. Аналогичная конструкция, в которой исходят не из цепей, а из коцепей (произвольных функций, определённых на множестве всех упорядоченных симплексов и принимающих значения в G ), даёт группы когомологий. С этой конструкции, изложенной здесь в несколько модифицированной форме, и началось по существу становление алгебраической Топология В первоначальной конструкции рассматривались так называемые ориентированные симплексы (классы упорядоченных симплексов, отличающихся чётными перестановками вершин). Эта конструкция развита и обобщена в самых разнообразных направлениях. В частности, её алгебраические аспекты дали начало так называемой гомологической алгебре. Самым общим образом симплициальную схему можно определить как множество, в котором отмечены некоторые конечные подмножества («симплексы»), причём требуется, чтобы любое подмножество симплекса было снова симплексом. Такая симплициальная схема является симплициальной схемой триангуляции некоторого полиэдра тогда и только тогда, когда число элементов произвольного отмеченного подмножества не превосходит некоторого фиксированного числа. Впрочем, понятие полиэдра можно обобщить (получив так называемые «бесконечномерные полиэдры»), и тогда уже любая симплициальная схема будет схемой триангуляции некоторого полиэдра (называемого её геометрической реализацией). Произвольному открытому покрытию {Ua} каждого топологического пространства Х можно сопоставить симплициальную схему, вершинами которой являются элементы Ua покрытия и подмножество которой тогда и только тогда отмечено, когда элементы покрытия, составляющие это подмножество, имеют непустое пересечение. Эта симплициальная схема (и соответствующий полиэдр) называемому нервом покрытия. Нервы всевозможных покрытий в определённом смысле аппроксимируют пространство Х и, исходя из их групп гомологий и когомологий, можно посредством соответствующего предельного перехода получать группы гомологий и когомологий самого X. Эта идея лежит в основе почти всех конструкций общей теории гомологий. Аппроксимация топологического пространства нервами его открытых покрытий играет важную роль и в общей Топология Топология (от греч. tоpos — место и ¼логия) — часть геометрии, посвященная изучению феномена непрерывности (выражающегося, например, в понятии предела). Разнообразие проявлений непрерывности в математике и широкий спектр различных подходов к её изучению привели к распадению единой Т. на ряд отделов («общая Т.», «алгебраическая Т.» и др.), отличающихся друг от друга по предмету и методу изучения и фактически весьма мало между собой связанных. I. Общая топология2. Равномерная топология 3. Алгебраическая топология 4. Кусочно-линейная топология 5. Топология многообразий 6. Основные этапы развития топологии |
||||||||||||||||||||||||||||||||||||||||||||||
|