Модели (в биологии)

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
МА МБ МВ МГ МД МЕ МЁ МЖ МЗ МИ МК МЛ МН МО МП МР МС МТ МУ МХ МЦ МШ МЫ МЬ МЭ МЮ МЯ
МОА
МОБ
МОВ
МОГ
МОД
МОЕ
МОЖ
МОЗ
МОИ
МОЙ
МОК
МОЛ
МОМ
МОН
МОО
МОП
МОР
МОС
МОТ
МОУ
МОФ
МОХ
МОЦ
МОЧ
МОШ
МОЩ
МОЭ
МОЮ
МОЯ

Модели в биологии применяются для моделирования биологических структур, функций и процессов на разных уровнях организации живого: молекулярном, субклеточном, клеточном, органно-системном, организменном и популяционно-биоценотическом. Возможно также моделирование различных биологических феноменов, а также условий жизнедеятельности отдельных особей, популяций и экосистем.

  В биологии применяются в основном три вида Модели (в биологии): биологические, физико-химические и математические (логико-математические). Биологические Модели (в биологии) воспроизводят на лабораторных животных определённые состояния или заболевания, встречающиеся у человека или животных. Это позволяет изучать в эксперименте механизмы возникновения данного состояния или заболевания, его течение и исход, воздействовать на его протекание. Примеры таких Модели (в биологии) — искусственно вызванные генетические нарушения, инфекционные процессы, интоксикации, воспроизведение гипертонического и гипоксического состоянии, злокачественных новообразований, гиперфункции или гипофункции некоторых органов, а также неврозов и эмоциональных состояний. Для создания биологической Модели (в биологии) применяют различные способы воздействия на генетический аппарат, заражение микробами, введение токсинов, удаление отдельных органов или введение продуктов их жизнедеятельности (например, гормонов), различные воздействия на центральную и периферическую нервную систему, исключение из пищи тех или иных веществ, помещение в искусственно создаваемую среду обитания и многие другие способы. Биологические Модели (в биологии) широко используются в генетике, физиологии, фармакологии.

  Физико-химические Модели (в биологии) воспроизводят физическими или химическими средствами биологические структуры, функции или процессы и, как правило, являются далёким подобием моделируемого биологического явления. Начиная с 60-х гг. 19 в. были сделаны попытки создания физико-химической Модели (в биологии) структуры и некоторых функций клеток. Так, немецкий учёный Модели (в биологии) Траубе (1867) имитировал рост живой клетки, выращивая кристаллы CuSО4 в водном растворе К4[Fе(СN)6]: французский физик С. Ледюк (1907), погружая в насыщенный раствор К3РО4 сплавленный СаСl2, получил — благодаря действию сил поверхностного натяжения и осмоса — структуры, внешне напоминающие водоросли и грибы. Смешивая оливковое масло с разными растворимыми в воде веществами и помещая эту смесь в каплю воды, О. Бючли (1892) получал микроскопические пены, имевшие внешнее сходство с протоплазмой; такая Модели (в биологии) воспроизводила даже амёбоидное движение. С 60-х гг. 19 в. предлагались также разные физические Модели (в биологии) проведения возбуждения по нерву. В Модели (в биологии), созданной итальянским учёным К. Маттеуччи и немецким — Л. Германом, нерв был представлен в виде проволоки, окруженной оболочкой из проводника второго рода. При соединении оболочки и проволоки с гальванометром наблюдалась разность потенциалов, изменявшаяся при нанесении на участок «нерва» электрического «раздражения». Такая Модели (в биологии) воспроизводила некоторые биоэлектрические явления при возбуждении нерва. Французский учёный Р. Лилли на Модели (в биологии) распространяющейся по нерву волны возбуждения воспроизвёл ряд явлений, наблюдаемых в нервных волокнах (рефрактерный период, «всё или ничего» закон, двустороннее проведение). Модели (в биологии) представляла собой стальную проволоку, которую помещали сначала в крепкую, а затем в слабую азотную кислоту. Проволока покрывалась окислом, который восстанавливался при ряде воздействий; возникший в одном участке процесс восстановления распространялся вдоль проволоки. Подобные Модели (в биологии), показавшие возможность воспроизведения некоторых свойств и проявлений живого посредством физико-химических явлений, основаны на внешнем качественном сходстве и представляют лишь исторический интерес.

  Позднее более сложные Модели (в биологии), основанные на гораздо более глубоком количественном подобии, строились на принципах электротехники и электроники. Так, на основе данных электрофизиологических исследований были построены электронные схемы, моделирующие биоэлектрические потенциалы в нервной клетке, её отростке и в синапсе. Построены также механические машины с электронным управлением, моделирующие сложные акты поведения (образование условного рефлекса, процессы центрального торможения и пр.). Этим Модели (в биологии) обычно придают форму мыши, черепахи, собаки (см. рис. 1—3). Такие Модели (в биологии) также слишком упрощают явления, наблюдаемые в организме, и имеют большее значение для бионики, чем для биологии.

  Значительно большие успехи достигнуты в моделировании физико-химических условий существования живых организмов или их органов и клеток. Так, подобраны растворы неорганических и органических веществ (растворы Рингера, Локка, Тироде и др.), имитирующие внутреннюю среду организма и поддерживающие существование изолированных органов или культивируемых вне организма клеток (см. Культуры тканей).

  Модели (в биологии) биологических мембран (плёнка из природных фосфолипидов разделяет раствор электролита) позволяют исследовать физико-химические основы процессов транспорта ионов и влияние на него различных факторов. С помощью химических реакций, протекающих в растворах в автоколебательном режиме, моделируют колебательные процессы, характерные для многих биологических феноменов, — дифференцировки, морфогенеза, явлений в сложных нейронных сетях и т. д.

  Математические Модели (в биологии) (математическое и логико-математическое описания структуры, связей и закономерностей функционирования живых систем) строятся на основе данных эксперимента или умозрительно, формализованно описывают гипотезу, теорию или открытую закономерность того или иного биологического феномена и требуют дальнейшей опытной проверки. Различные варианты подобных экспериментов выявляют границы применения математической Модели (в биологии) и дают материал для её дальнейшей корректировки. Вместе с тем «проигрывание» математического Модели (в биологии) биологического явления на ЭВМ часто позволяет предвидеть характер изменения исследуемого биологического процесса в условиях, трудно воспроизводимых в эксперименте. Математическая Модели (в биологии) в отдельных случаях позволяет предсказать некоторые явления, ранее не известные исследователю. Так, Модели (в биологии) сердечной деятельности, предложенная голландскими учёными ван дер Полом и ван дер Марком, основанная на теории релаксационных колебаний, указала на возможность особого нарушения сердечного ритма, впоследствии обнаруженного у человека. Из математической Модели (в биологии) физиологических явлений следует назвать также Модели (в биологии) возбуждения нервного волокна, разработанную английскими учёными А. Ходжкином и А. Хаксли. На основе теории нервных сетей американских учёных У. Мак-Каллока и У. Питса строятся логико-математические модели взаимодействия нейронов. Системы дифференциальных и интегральных уравнений положены в основу моделирования биоценозов (В. Вольтерра, А. Н. Колмогоров). Марковская математическая Модели (в биологии) процесса эволюции построена О. С. Кулагиной и А. А. Ляпуновым. И. Модели (в биологии) Гельфандом и Модели (в биологии) Л. Цетлиным на основе теории игр и теории конечных автоматов разработаны модельные представления об организации сложных форм поведения. В частности, показано, что управление многочисленными мышцами тела строится на основе выработки в нервной системе некоторых функциональных блоков — синергий, а не путём независимого управления каждой мышцей. Создание и использование математических и логико-математических Модели (в биологии), их совершенствование способствуют дальнейшему развитию математической и теоретической биологии.

 

  Лит.: Моделирование в биологии. Сб. ст., пер. с англ., Модели (в биологии), 1963; Новик И. Б., О моделировании сложных систем, Модели (в биологии), 1965; Кулагина О. С., Ляпунов А. А., К вопросу о моделировании эволюционного процесса, в кн.: Проблемы кибернетики, в. 16, Модели (в биологии), 1966; Модели структурно-функциональной организации некоторых биологических систем. [Сб. ст.], Модели (в биологии), 1966; Математическое моделирование жизненных процессов. Сб. ст., Модели (в биологии), 1968; Теоретическая и математическая биология, пер. с англ., Модели (в биологии), 1968; Моделирование в биологии и медицине, Л., 1969; Бейли Н., Математика в биологии и медицине, пер. с англ., Модели (в биологии), 1970; Управление и информационные процессы в живой природе, Модели (в биологии), 1971; Эйген Модели (в биологии), Молекулярная самоорганизация и ранние стадии эволюции, «Успехи физических наук», 1973, т. 109, в. 3.

  Е. Б. Бабский, Е. С. Геллер.

Рис. 1. Общий вид «черепахи» Института автоматики и телемеханики АН СССР. Модели (в биологии).

Рис. 1. Общий вид «черепахи» Института автоматики и телемеханики АН СССР.

Рис. 2. «Мышь» К. Шеннона — автомат, моделирующий «обучение» при повторном прохождении лабиринта. Модели (в биологии).

Рис. 2. «Мышь» К. Шеннона — автомат, моделирующий «обучение» при повторном прохождении лабиринта.

Рис. 3. К. Шеннон пускает «мышь» в лабиринт. Модели (в биологии).

Рис. 3. К. Шеннон пускает «мышь» в лабиринт.

Так же Вы можете узнать о...


Высшая школа партийных организаторов при ЦК ВКП (б), создана в 1936.
Гипер-ядро, гипер-фрагмент, атомное ядро, в состав которого наряду с нуклонами входит гиперон.
Гурд (франц. gourde), денежная единица Гаити, равна 100 сентимо.
Дисбаланс (франц. disbalance), неуравновешенность вращающихся деталей машин относительно их оси.
Жиряки, отряд млекопитающих; то же, что даманы.
Илиев Любомир Георгиев (р. 7.4.1913, Тырново), болгарский математик, академик АН НРБ (1967).
Камер-коллегия, центральное государственное учреждение в России 18 в.
Кинетопласт (от греч. kinetos — движущийся, подвижный и plastos — вылепленный, сформированный), самовоспроизводящаяся клеточная органелла, расположенная у некоторых простейших у основания жгутика; то же, что блефаропласт.
Контрольный совет в Германии, совместный орган СССР, США, Великобритании и Франции, учрежденный (по соглашению между ними) в 1945, после капитуляции фашистской Германии, для осуществления верховной власти в Германии на период её оккупации.
Кука пролив (Cook Strait), пролив между Северным и Южным островами Новой Зеландии, соединяет Тасманово море и Тихий океан.
Ливан (государство) Ливан, Ливанская Республика (Аль-Джумхурия аль-Лубнания).
Малозаметные заграждения, наземные заграждения из проволоки.
Механический эквивалент света, отношение потока излучения, принадлежащего к видимой области спектра, к создаваемому этим излучением световому потоку.
Муравьёв-Апостол Матвей Иванович [25.4(6.5).