Ньютон Исаак

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
НА НГ НД НЕ НЁ НЗ НИ НК НО НР НС НУ НЧ НЫ НЬ НЭ НЮ НЯ
НЬЕ
НЬЁ
НЬИ
НЬЮ
НЬЯ

Ньютон (Newton) Исаак (4.1.1643, Вулсторп, около Граптема, — 31.3.1727, Кенсингтон), английский физик и математик, создавший теоретические основы механики и астрономии, открывший закон всемирного тяготения, разработавший (наряду с Г. Лейбницем) дифференциальное и интегральное исчисления, изобретатель зеркального телескопа и автор важнейших экспериментальных работ по оптике.

И. Ньютон. Ньютон Исаак.

И. Ньютон.

  Ньютон Исаак родился в семье фермера; отец Ньютон Исаак умер незадолго до рождения сына. В 12 лет Ньютон Исаак начал учиться в Грантемской школе, в 1661 поступил в Тринити-колледж Кембриджского университета в качестве субсайзера (так назывались бедные студенты, выполнявшие для заработка обязанности слуг в колледже), где его учителем был известный математик И. Барроу. Окончив университет, Ньютон Исаак в 1665 получил учёную степень бакалавра. В 1665—67, во время эпидемии чумы, находился в своей родной деревне Вулсторп; эти годы были наиболее продуктивными в научном творчестве Ньютон Исаак Здесь у него сложились в основном те идеи, которые привели его к созданию дифференциального и интегрального исчислений, к изобретению зеркального телескопа (собственноручно изготовленного им в 1668; см. Ньютона система рефлектора), открытию закона всемирного тяготения (см. Ньютона закон тяготения), здесь он провёл опыты над разложением света (см. Дисперсия света). В 1668 Ньютон Исаак была присвоена степень магистра, а в 1669 Барроу передал ему почётную люкасовскую физико-математическую кафедру, которую Ньютон Исаак занимал до 1701. В 1671 Ньютон Исаак построил второй зеркальный телескоп — больших размеров и лучшего качества. Демонстрация телескопа произвела сильное впечатление на современников, и вскоре после этого Ньютон Исаак был избран (в январе 1672) член Лондонского королевского общества (в 1703 стал его президентом). В 1687 он опубликовал свой грандиозный труд «Математические начала натуральной философии» (кратко —«Начала»). В 1695 получил должность смотрителя Монетного двора (этому, очевидно, способствовало то, что Ньютон Исаак изучал свойства металлов). Ньютон Исаак было поручено руководство перечеканкой всей английской монеты. Ему удалось привести в порядок расстроенное монетное дело Англии, за что он получил в 1699 пожизненное высокооплачиваемое звание директора Монетного двора. В том же году Ньютон Исаак избран иностранным членом Парижской АНьютон Исаак В 1705 за научные труды он возведён в дворянское достоинство. Похоронен Ньютон Исаак в английском национальном пантеоне — Вестминстерском аббатстве.

Титульный лист первого издания «Начал». Ньютон Исаак.

Титульный лист первого издания «Начал».

  Основные вопросы механики, физики и математики, разрабатывавшиеся Ньютон Исаак, были тесно связаны с научной проблематикой его времени. Оптикой Ньютон Исаак начал интересоваться ещё в студенческие годы, его исследования в этой области были связаны со стремлением устранить недостатки оптических приборов. В первой оптической работе «Новая теория света и цветов», доложенной им в Лондонском королевском обществе в 1672, Ньютон Исаак высказал свои взгляды о «телесности света» (корпускулярную гипотезу света). Эта работа вызвала бурную полемику, в которой противником корпускулярных взглядов Ньютон Исаак на природу света выступил Р. Гук (в то время господствовали волновые представления). Отвечая Гуку, Ньютон Исаак высказал гипотезу, сочетавшую корпускулярные и волновые представления о свете. Эту гипотезу Ньютон Исаак развил затем в сочинении «Теория света и цветов», в котором он описал также опыт с Ньютона кольцами и установил периодичность света. При чтении этого сочинения на заседании Лондонского королевского общества Гук выступил с притязанием на приоритет, и раздражённый Ньютон Исаак принял решение не публиковать оптических работ. Многолетние оптические исследования Ньютон Исаак были опубликованы им лишь в 1704 (через год после смерти Гука) в фундаментальном труде «Оптика». Принципиальный противник необоснованных и произвольных гипотез, Ньютон Исаак начинает «Оптику» словами: «Мое намерение в этой книге — не объяснять свойства света гипотезами, но изложить и доказать их рассуждениями и опытами» (Ньютон И., Оптика..., М., 1954, с. 9). В «Оптике» Ньютон Исаак описал проведённые им чрезвычайно тщательные эксперименты по обнаружению дисперсии света — разложения с помощью призмы белого света на отдельные компоненты различной цветности и преломляемости и показал, что дисперсия вызывает искажение в линзовых оптических системах — хроматическую аберрацию. Ошибочно считая, что устранить искажение, вызываемое ею, невозможно, Ньютон Исаак сконструировал зеркальный телескоп. Наряду с опытами по дисперсии света Ньютон Исаак описал интерференцию света в тонких пластинках и изменение интерференционных цветов в зависимости от толщины пластинки в кольцах Ньютона. По существу Ньютон Исаак первым измерил длину световой волны. Кроме того, он описал здесь свои опыты по дифракции света.

Зеркальный телескоп И. Ньютона, хранящийся в Лондонском королевском обществе. Ньютон Исаак.

Зеркальный телескоп И. Ньютона, хранящийся в Лондонском королевском обществе.

  «Оптика» завершается специальным приложением — «Вопросами», где Ньютон Исаак высказывает свои физические взгляды. В частности, здесь он излагает воззрения на строение вещества, в которых присутствует в неявном виде понятие не только атома, но и молекулы. Кроме того, Ньютон Исаак приходит к идее иерархического строения вещества: он допускает, что «частички тел» (атомы) разделены промежутками — пустым пространством, а сами состоят из более мелких частичек, также разделённых пустым пространством и состоящих из ещё более мелких частичек, и т.д. до твёрдых неделимых частичек. Ньютон Исаак вновь рассматривает здесь гипотезу о том, что свет может представлять собой сочетание движения материальных частиц с распространением волн эфира.

  Вершиной научного творчества Ньютон Исаак являются «Начала», в которых Ньютон Исаак обобщил результаты, полученные его предшественниками (Г. Галилей, И. Кеплер, Р. Декарт, Х. Гюйгенс, Дж. Борелли, Гук, Э. Галлей и др.), и свои собственные исследования и впервые создал единую стройную систему земной и небесной механики, которая легла в основу всей классической физики. Здесь Ньютон Исаак дал определения исходных понятий — количества материи, эквивалентного массе, плотности; количества движения, эквивалентного импульсу, и различных видов силы. Формулируя понятие количества материи, Ньютон Исаак исходил из представления о том, что атомы состоят из некой единой первичной материи; плотность Ньютон Исаак понимал как степень заполнения единицы объёма тела первичной материей. Ньютон Исаак впервые рассмотрел основной метод феноменологического описания любого физического воздействия через посредство силы. Определяя понятия пространства и времени, он отделял «абсолютное неподвижное пространство» от ограниченного подвижного пространства, называя «относительным», а равномерно текущее, абсолютное, истинное время, называя «длительностью», — от относительного, кажущегося времени, служащего в качестве меры «продолжительности». Эти понятия времени и пространства легли в основу классической механики. Затем Ньютон Исаак сформулировал свои 3 знаменитые «аксиомы, или законы движения»: закон инерции (открытый Галилеем, первый закон Ньютон Исаак), закон пропорциональности количества движения силе (второй закон Ньютон Исаак) и закон равенства действия и противодействия (третий закон Ньютон Исаак) — т. н. Ньютона законы механики. Из 2-го и 3-го законов он выводит закон сохранения количества движения для замкнутой системы.

  Ньютон Исаак рассмотрел движение тел под действием центральных сил и доказал, что траекториями таких движений являются конические сечения (эллипс, гипербола, парабола). Он изложил своё учение о всемирном тяготении, сделал заключение, что все планеты и кометы притягиваются к Солнцу, а спутники — к планетам с силой, обратно пропорциональной квадрату расстояния, и разработал теорию движения небесных тел. Ньютон Исаак показал, что из закона всемирного тяготения вытекают Кеплера законы и важнейшие отступления от них. Так, он объяснил особенности движения Луны (вариацию, попятное движение узлов и т.д.), явление прецессии и сжатие Юпитера, рассмотрел задачи притяжения сплошных масс, теории приливов и отливов, предложил теорию фигуры Земли.

  В «Началах» Ньютон Исаак исследовал движение тел в сплошной среде (газе, жидкости) в зависимости от скорости их перемещения и привёл результаты своих экспериментов по изучению качания маятников в воздухе и жидкостях (см. Ньютоновская жидкость). Здесь же он рассмотрел скорость распространения звука в упругих средах. Ньютон Исаак доказал посредством математического расчёта полную несостоятельность гипотезы Декарта, объяснявшего движение небесных тел с помощью представления о разнообразных вихрях в эфире, заполняющем Вселенную. Ньютон Исаак нашёл закон охлаждения нагретого тела. В этом же сочинении Ньютон Исаак уделил значительное внимание закону механического подобия, на основе которого развилась подобия теория.

  Т. о., в «Началах» впервые дана общая схема строгого математического подхода к решению любой конкретной задачи земной или небесной механики. Дальнейшее применение этих методов потребовало, однако, детальной разработки аналитической механики (Л. Эйлер, Ж. Л. Д'Аламбер, Ж. Л. Лагранж, У. Р. Гамильтон) и гидромеханики (Эйлер и Д. Бернулли). Последующее развитие физики выявило пределы применимости механики Ньютон Исаак (см. Относительности теория, Квантовая механика, Эйнштейн А.).

  Задачи естествознания, поставленные Ньютон Исаак, потребовали разработки принципиально новых математических методов. Математика для Ньютон Исаак была главным орудием в физических изысканиях; он подчёркивал, что понятия математики заимствуются извне и возникают как абстракция явлений и процессов физического мира, что по существу математика является частью естествознания.

  Разработка дифференциального исчисления и интегрального исчисления явилась важной вехой в развитии математики. Большое значение имели также работы Ньютон Исаак по алгебре, интерполированию и геометрии. Основные идеи метода флюксий (см. Флюксий исчисление) сложились у Ньютон Исаак под влиянием трудов П. Ферма, Дж. Валлиса и его учителя И. Барроу в 1665—66. К этому времени относится открытие Ньютон Исаак взаимно обратного характера операций дифференцирования и интегрирования и фундаментальные открытия в области бесконечных рядов, в частности индуктивное обобщение т. н. теоремы о Ньютона биноме на случай любого действительного показателя. Вскоре были написаны и основные сочинения Ньютон Исаак по анализу, изданные, однако, значительно позднее. Некоторые математические открытия Ньютон Исаак получили известность уже в 70-е гг. благодаря его рукописям и переписке.

  В понятиях и терминологии метода флюксий с полной отчётливостью отразилась глубокая связь математических и механических исследований Н, Понятие непрерывной математической величины Ньютон Исаак вводит как абстракцию от различных видов непрерывного механического движения. Линии производятся движением точек, поверхности — движением линий, тела — поверхностей, углы — вращением сторон и т.д. Переменные величины Ньютон Исаак назвал флюентами (текущими величинами, от лат. fluo — теку). Общим аргументом текущих величин — флюент — является у Ньютон Исаак «абсолютное время», к которому отнесены прочие, зависимые переменные. Скорости изменения флюент Ньютон Исаак назвал флюксиями, а необходимые для вычисления флюксий бесконечно малые изменения флюент — «моментами» (у Лейбница они назывались дифференциалами). Таким образом, Ньютон Исаак положил в основу понятия флюксий (производной) и флюенты (первообразной, или неопределённого интеграла).

  В сочинении «Анализ при помощи уравнений с бесконечным числом членов» (1669, опубликовано 1711) Ньютон Исаак вычислил производную и интеграл любой степенной функции. Различные рациональные, дробно-рациональные, иррациональные и некоторые трансцендентные функции (логарифмическую, показательную, синус, косинус, арксинус) Ньютон Исаак выражал с помощью бесконечных степенных рядов. В этом же труде Ньютон Исаак изложил метод численного решения алгебраических уравнений (см. Ньютона метод), а также метод для нахождения разложения неявных функций в ряд по дробным степеням аргумента. Метод вычисления и изучения функций их приближением бесконечными рядами приобрёл огромное значение для всего анализа и его приложений.

  Наиболее полное изложение дифференциального и интегрального исчислений содержится в «Методе флюксий...» (1670—1671, опубл. 1736). Здесь Ньютон Исаак формулирует две основные взаимно-обратные задачи анализа: 1) определение скорости движения в данный момент времени по известному пути, или определение соотношения между флюксиями по данному соотношению между флюентами (задача дифференцирования), и 2) определение пройденного за данное время пути по известной скорости движения, или определение соотношения между флюентами по данному соотношению между флюксиями (задача интегрирования дифференциального уравнения и, в частности, отыскания первообразных). Метод флюксий применяется здесь к большому числу геометрических вопросов (задачи на касательные, кривизну, экстремумы, квадратуры, спрямления и др.); здесь же выражается в элементарных функциях ряд интегралов от функций, содержащих квадратный корень из квадратичного трёхчлена. Большое внимание уделено в «Методе флюксий» интегрированию обыкновенных дифференциальных уравнений, причём основную роль играет представление решения в виде бесконечного степенного ряда. Ньютон Исаак принадлежит также решение некоторых задач вариационного исчисления.

  Во введении к «Рассуждению о квадратуре кривых» (основной текст 1665—66, введение и окончательный вариант 1670, опубликован 1704) и в «Началах» он намечает программу построения метода флюксий на основе учения о пределе, о «последних отношениях исчезающих величин» или «первых отношениях зарождающихся величин», не давая, впрочем, формального определения предела и рассматривая его как первоначальное. Учение Ньютон Исаак о пределе через ряд посредствующих звеньев (Ж. Л. Д'Аламбер, Л. Эйлер) получило глубокое развитие в математике 19 в. (О. Л. Коши и др.).

  В «Методе разностей» (опубликован 1711) Ньютон Исаак дал решение задачи о проведении через n + 1 данные точки с равноотстоящими или неравноотстоящими абсциссами параболической кривой n-го порядка и предложил интерполяционную формулу, а в «Началах» дал теорию конических сечений. В «Перечислении кривых третьего порядка» (опубликована 1704) Ньютон Исаак приводится классификация этих кривых, сообщаются понятия диаметра и центра, указываются способы построения кривых 2-го и 3-го порядка по различным условиям. Этот труд сыграл большую роль в развитии аналитической и отчасти проективной геометрии. Во «Всеобщей арифметике» (опубликована в 1707 по лекциям, читанным в 70-е гг. 17 в.) содержатся важные теоремы о симметрических функциях корней алгебраических уравнений, об отделении корней, о приводимости уравнений и др. Алгебра окончательно освобождается у Ньютон Исаак от геометрической формы, и его определение числа не как собрания единиц, а как отношения длины любого отрезка к отрезку, принятому за единицу, явилось важным этапом в развитии учения о действительном числе.

  Созданная Ньютон Исаак теория движения небесных тел, основанная на законе всемирного тяготения, была признана крупнейшими английским учёными того времени и резко отрицательно встречена на европейском континенте. Противниками взглядов Ньютон Исаак (в частности, в вопросе о тяготении) были картезианцы (см. Картезианство), воззрения которых господствовали в Европе (в особенности во Франции) в 1-й половине 18 в. Убедительным доводом в пользу теории Ньютон Исаак явилось обнаружение рассчитанной им приплюснутости земного шара у полюсов вместо выпуклостей, ожидавшихся по учению Декарта. Исключительную роль в укреплении авторитета теории Ньютон Исаак сыграла работа А. К. Клеро по учёту возмущающего действия Юпитера и Сатурна на движение кометы Галлея. Успехи теории Ньютон Исаак в решении задач небесной механики увенчались открытием планеты Нептун (1846), основанном на расчётах возмущений орбиты Юпитера (У. Леверье и Дж. Адамс).

  Вопрос о природе тяготения во времена Ньютон Исаак сводился в сущности к проблеме взаимодействия, т. е. наличия или отсутствия материального посредника в явлении взаимного притяжения масс. Не признавая картезианских воззрений на природу тяготения, Ньютон Исаак, однако, уклонился от каких-либо объяснений, считая, что для них нет достаточных научно-теоретических и опытных оснований. После смерти Ньютон Исаак возникло научно-философское направление, получившее название ньютонианства, наиболее характерной чертой которого была абсолютизация и развитие высказывания Ньютон Исаак: «гипотез не измышляю» («hypotheses non fingo») и призыв к феноменологическому изучению явлений при игнорировании фундаментальных научных гипотез.

  Могучий аппарат ньютоновской механики, его универсальность и способность объяснить и описать широчайший круг явлений природы, особенно астрономических, оказали огромное влияние на многие области физики и химии. Ньютон Исаак писал, что было бы желательно вывести из начал механики и остальные явления природы, и при объяснении некоторых оптических и химических явлений сам использовал механической модели. Влияние взглядов Ньютон Исаак на дальнейшее развитие физики огромно. «Ньютон заставил физику мыслить по-своему, “классически”, как мы выражаемся теперь... Можно утверждать, что на всей физике лежал индивидуальный отпечаток его мысли; без Ньютона наука развивалась бы иначе» (Вавилов С. И., Исаак Ньютон, 1961, с. 194, 196).

Надгробный памятник И. Ньютону в Вестминстерском аббатстве в Лондоне. Ньютон Исаак.

Надгробный памятник И. Ньютону в Вестминстерском аббатстве в Лондоне.

  Материалистические естественнонаучные воззрения совмещались у Ньютон Исаак с религиозностью. К концу жизни он написал сочинение о пророке Данииле и толкование Апокалипсиса. Однако Ньютон Исаак четко отделял науку от религии. «Ньютон оставил ему (богу) ещё “первый толчок”, но запретил всякое дальнейшее вмешательство в свою солнечную систему» (Ф. Энгельс, Диалектика природы, 1969, с. 171).

  На русский язык переведены все основные работы Ньютон Исаак; большая заслуга в этом принадлежит А. Ньютон Исаак Крылову и С. И. Вавилову.

 

Соч.: Opera quae extant omnia. Commentariis illustravit S. Horsley, v. 1—5, L., 1779—85; в рус. пер.— Математические начала натуральной философии, с примечаниями и пояснениями А. Ньютон Исаак Крылова, в кн.: Крылов А. Ньютон Исаак, Собр. трудов, т. 7, М.—Л., 1936; Лекции по оптике, пер. С. И. Вавилова, [М.], 1946; Оптика или трактат об отражениях, преломлениях, изгибаниях и цветах света, пер. и примечания С. И, Вавилова, 2 изд., М., 1954; Математические работы, пер. с лат. Д. Д. Мордухай-Болтовского, М.—Л., 1937; Всеобщая арифметика или книга об арифметическом синтезе и анализе, пер. А. П. Юшкевича, М.—Л., 1948.

 

  Лит.: Вавилов С. И., Исаак Ньютон, М., 1961; Исаак Ньютон. 1643—1727. Сб. статей к трехсотлетию со дня рождения, под ред. С. И. Вавилова, М.—Л., 1943.

Так же Вы можете узнать о...


Иомуты, иомуды, туркменское племя; см. Туркмены.
Казуары (Casuariiformes), отряд бескилевых птиц.
Каракуль (озеро в Таджикской ССР) Каракуль (тюрк. — чёрное озеро), бессточное озеро в северной части Памира, в Таджикской ССР.
Квантовые стандарты частоты, устройства, в которых для точного измерения частоты колебаний или для генерирования колебаний с весьма стабильной частотой используются квантовые переходы частиц (атомов, молекул, ионов) из одного энергетическое состояния в другое.
Кия, река в Кемеровской области РСФСР, низовье в Томской области, лев.
Колор-эквивалент, цветовой эквивалент, величина, характеризующая цвет небесного светила.
Концовка, 1) заключительный компонент литературного произведения или его части.
Крамер Харальд Крамер (Cramér) Харальд (р.
Кубинский институт радиовещания (Istituto Cubano de Radiodifusion), правительственная организация, в ведении которой находится радиовещание и телевидение Кубы.
Лагтинг (lagting), 1) в Норвегии верхняя палата парламента (стортинга); избирается стортингом в составе одной четверти его членов, остальные три четверти депутатов образуют нижнюю палату — одельстинг.
Лео Андре Лео (Leo) Андре (псевдоним; настоящее имя и фамилия Леони Шансе, Champseix, урождённая Бера, Bera) (1829, Лузиньян, — 1900, Париж), французская общественная деятельница, писательница.
Лобачевского геометрия, геометрическая теория, основанная на тех же основных посылках, что и обычная евклидова геометрия, за исключением аксиомы о параллельных, которая заменяется на аксиому о параллельных Лобачевского.