СССР. Технические науки Строительная наука и техника

Большая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.


А Б В Г Д Е Ё Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я 1 2 3 4 8 A L M P S T X
ТА ТБ ТВ ТЕ ТЁ ТИ ТК ТЛ ТМ ТО ТР ТС ТУ ТХ ТЦ ТЧ ТШ ТЫ ТЬ ТЭ ТЮ ТЯ
ТЕА
ТЕБ
ТЕВ
ТЕГ
ТЕД
ТЕЖ
ТЕЗ
ТЕИ
ТЕЙ
ТЕК
ТЕЛ
ТЕМ
ТЕН
ТЕО
ТЕП
ТЕР
ТЕС
ТЕТ
ТЕУ
ТЕФ
ТЕХ
ТЕЧ
ТЕШ
ТЕЯ

Строительная наука и техника

В дореволюционной России строительная наука характеризовалась сравнительно высоким уровнем развития. Об этом свидетельствуют возведённые в конце 19 — начале 20 вв. весьма сложные в техническом отношении инженерные сооружения, некоторые промышленные объекты, глубокие по содержанию оригинальные исследования в области строительной механики и сопротивления материалов. Отечественная строит. наука этого периода выдвинула ряд крупных учёных. Мировую известность приобрели труды Д. И. Журавского по вопросам прочности балок при изгибе, Х. С. Головина в области теории упругости, Ф. М. Ясинского по устойчивости элементов строит. конструкций, послужившие основой для разработки современных нормативных документов. В фундаментальных исследованиях А. Н. Крылова, И. Г. Бубнова, Б. Г. Галёркина были поставлены и решены принципиально новые задачи строит. механики. Результаты исследовательской инженерной деятельности А. Р. Шуляченко, И. Г. Малюги и Н. А. Белелюбского стали основополагающими для развития и совершенствования теории и технологии цемента, бетона и железобетона. В дореволюционные России не было, однако, научных учреждений по строительству, проблемы строительной науки исследовались преимущественно кафедрами вузов и отдельными высококвалифицированными инженерами-практиками.

  Для выполнения задач, вставших перед молодым Советским государством в области строительства, необходимо было наряду с организацией планомерной подготовки инженерно-технических кадров строительного профиля создать отраслевые научно-исследовательские организации, способные решать проблемы, связанные с восстановлением и развитием народного хозяйства. В 1918 по инициативе В. И. Ленина был организован Научно-экспериментальный институт путей сообщения, затем были созданы Государственный экспериментальный институт силикатов, Институт минерального сырья и Керамический институт. Организация планомерных исследований в первую очередь по этим вопросам диктовалась насущными потребностями народного хозяйства: необходимо было в кратчайший срок восстановить железные дороги и ликвидировать острый недостаток в стройматериалах. Важным этапом в создании крупных научных центров по строительству явилась организация в 1927 Государственного института сооружений (ГИС), который объединил исследования по всем основным отраслям строительной науки. Создание этого института (впоследствии преобразованного в ЦНИПС — Центральный НИИ промышленных сооружений), в состав которого вошли крупнейшие учёные-строители различных специальностей, позволило выполнить исследования по важнейшим проблемам строительства, обеспечить тесную связь их с практикой (на базе ЦНИПС в дальнейшем был организован ряд основных научно-исследовательских институтов в области строительства). Развернулись работы по строительной механике, механике грунтов, по изучению теплофизических свойств стройматериалов, созданию лёгких заполнителей для бетонов и растворов на основе отходов «горячих» производств (главным образом котельных и доменных шлаков) и др. К крупным достижениям советской строительной науки относятся разработанные в 20-х гг. смешанный метод расчёта статически неопределимых систем (А. А. Гвоздев) и кинематический метод построения линий влияния (И. М. Рабинович). Для восстановительного периода было характерным преимущественное использование в строительстве деревянных и каменных конструкций, что объяснялось острым недостатком металла в стране. Деревянные фермы с пролётом 12—18 м (а в отдельных случаях до 40 м) применялись при строительстве большинства промышленных зданий. Строительные работы выполнялись сезонно (лишь в тёплое время года), в основном кустарными методами, с применением простейших средств механизации (кранов-укосин, шахтных подъёмников и т.п.). Однако уже в этот период началось внедрение новых технических решений строительных конструкций, в том числе стальных, и более совершенных методов производства строительных работ. В частности, существенно изменились методы изготовления деревянных конструкций. Уже в 1923 на строительстве павильонов 1-й Всесоюзной сельскохозяйственной выставки в Москве применялись деревянные фермы, рамы и арки с соединениями новых типов — на кольцевых шпонках. При строительстве здания Центрального аэрогидродинамического института (ЦАГИ) вместо брусчатых балок были применены более экономичные дощато-гвоздевые двутавровые балки и рамы с перекрёстной стенкой. Наряду с обычной кирпичной кладкой использовалась кладка из пустотных шлаковых камней, иногда довольно крупных размеров; нашли применение несущие железобетонные конструкции при возведении промышленных зданий. Т. о., восстановительный период явился начальным этапом создания и внедрения новой строительной техники. Благодаря деятельности научных центров строительная наука успешно справилась с задачами восстановительного периода и к концу 20-х гг. была уже достаточно подготовлена к решению задач, предусмотренных 5-летними планами.

  Реорганизация строит. дела началась в годы первых пятилеток. Необходимость индустриализации страны в короткие сроки, неуклонное возрастание объёмов капитального строительства при ограниченных ресурсах основных стройматериалов — стали и цемента — потребовали от строительной науки изыскания наиболее рациональных конструктивных форм зданий и сооружений, создания эффективных конструкций и материалов.

  В соответствии с практическими потребностями строительства основные исследования в области строит. механики в 30-е гг. были посвящены изучению стержневых систем. В частности, в этот период усовершенствованы и упрощены методы расчёта рам, обусловившие повышение надёжности сооружений. Тогда же разработаны теория расчёта тонкостенных стержней открытого профиля (В. З. Власов) и теоретические основы стеснённого кручения тонкостенных стержней замкнутого профиля (А. А. Уманский), что оказало большое влияние на дальнейшее развитие строительной механики тонкостенных пространственных систем. Большое внимание уделялось разработке методов расчёта пластинок и оболочек (Галёркин, Власов, П. Ф. Папкович и др.). Была усовершенствована теория расчёта балок и плит на упругом основании (Крылов, Н. М. Герсеванов, Б. Н. Жемочкин и др.). Основная задача в области механики грунтов состояла в создании методов расчёта и возведения фундаментов на различных грунтах, в том числе мёрзлых, просадочных, илистых и др. Основой для разработки этих методов послужили работы Герсеванова и Н. А. Цытовича. В 1934 был опубликован первый в мире курс механики грунтов, в котором широко использовались методы теории упругости. Необходимость освоения природных ресурсов Сибири и Дальнего Востока ускорила исследования вечномёрзлых грунтов, завершившиеся разработкой основ механики мёрзлых грунтов. Результатом исследований в области строит. физики явилась разработка теоретических и практических основ строит. теплотехники и рациональных методов проектирования ограждающих конструкций.

  Исследования в области металлических конструкций позволили не только повысить допускаемые напряжения и усилия, но и дифференцировать их в зависимости от вида воздействий на конструкции. Наряду с этим началось изучение пластической стадии работы металлических конструкций. Необходимость переноса места изготовления стальных конструкций со строит. площадки на завод, обусловленная индустриализацией строительства, выдвинула на первый план вопрос об обеспечении не только экономичности конструкций, но и их технологичности. Это потребовало разработки научных основ типизации и унификации металлических конструкций.

  Важным этапом в развитии строит. науки было предложение А. Ф. Лолейта (1931) о переходе от расчёта железобетонных конструкций по упругой стадии к расчёту по стадии разрушения. Новый метод расчёта, более экономичный и точнее отражавший работу конструкций, был экспериментально обоснован и включен в нормы проектирования. С 1932 начались исследования и разработка предварительно напряжённых железобетонных конструкций (В. В. Михайлов и др.), получивших впоследствии широкое распространение. строительство в конце 20-х — начале 30-х гг. ряда общественных зданий с большепролётными покрытиями типа оболочек (планетарий в Москве, театр в Новосибирске и др.) дало толчок к разработке методов расчёта и проектирования пространственных железобетонных конструкций (П. Л. Пастернак и др.), позволяющих при малом расходе материалов перекрывать большие пролёты. Если до 30-х гг. использовался в основном монолитный железобетон, то в период довоенных пятилеток требования индустриализации строительства и необходимость ликвидации его сезонности привели к тому, что наиболее распространённым методом производства строит. работ стал метод монтажа конструкций из элементов заводского изготовления.

  В начале 30-х гг. учёные института Гипрооргстрой [позднее реорганизованного во ВНИИОМС, ныне Центральный научно-исследовательский институт организации, механизации и техпомощи строительству (ЦНИИОМТП)] сформулировали основные принципы организации строительства, технологии и механизации строительного производства (М. В. Вавилов, А. В. Барановский и др.). На их основе, с учётом опыта передовых строек, были созданы скоростные и поточно-скоростные методы производства строит. работ, сыгравшие решающую роль в деле интенсификации строительства; были также решены вопросы сокращения затрат тяжёлого ручного труда на базе механизации (а затем и комплексной механизации) основных строительно-монтажных работ.

  К середине 30-х гг. методы расчёта каменных конструкций уже осваивались на большом теоретическом и экспериментальном материале (Л. И. Онищик, С. А. Семенцов и др.); были изучены особенности работы каменной кладки и различных видов камня и растворов, а также факторы, влияющие на прочность кладки. Это позволило повысить напряжения в каменных конструкциях и соответственно снизить расход стройматериалов. Исследования прочности кладки, выполненной методом замораживания раствора, обеспечили возможность возведения зданий в зимнее время без применения тепляков.

  Исследования в области деревянных конструкций (Г. Г. Карлсен и др.) позволили в 30-х гг. значительную часть несущих конструкций зданий и различных сооружений (градирни, эстакады, транспортёрные галереи и т. п.) изготовлять из дерева.

  В годы Великой Отечественной войны 1941—1945 ввиду ограниченных возможностей применения металла и железобетона вновь расширилось использование деревянных и каменных конструкций. Основные усилия научно-исследовательских организаций были направлены на создание норм проектирования конструкций в условиях военного времени, а начиная с 1943 — на разработку рекомендаций по эффективным методам восстановления зданий и сооружений.

  В послевоенные годы был создан ряд научно-исследовательских институтов строительного профиля в союзных республиках; некоторые из этих институтов стали крупными научными центрами, учитывающими при решении практических задач строительства весь комплекс местных условий (климатические и геологические особенности, сырьевые ресурсы, индустриальная база и др.). Большое научное и практическое значение имеют проводимые республиканскими институтами исследования в области строительной механики, сейсмостойкого строительства, строительных конструкций и материалов (Институт строительной механики и сейсмостойкости АН Грузинской ССР, Институт механики и сейсмостойкости сооружений АН Узбекской ССР, Институт строительства и архитектуры Госстроя БССР и др.).

  Для конца 40-х — начала 50-х гг. характерно особенно быстрое развитие строительной науки, расширение и углубление её связей со строит. производством, что было обусловлено необходимостью скорейшего восстановления народного хозяйства, а также огромным объёмом капитального строительства. Начался переход к индустриальным методам строительства; развёртываются научно-исследовательские работы сначала в области крупноблочного, а затем крупнопанельного домостроения. Примером активного влияния науки на решение народно-хозяйственных задач является комплексная разработка в конце 40-х — начале 50-х гг. основных принципов крупнопанельного строительства, объёмно-планировочных и конструктивных решений крупнопанельных жилых домов, методов заводской технологии изготовления крупноразмерных конструкций (панелей), а также способов производства монтажных работ (коллектив учёных во главе с Г. Ф. Кузнецовым), что дало возможность в широких масштабах развернуть крупнопанельное жилищное строительство. Сборный железобетон стал основой индустриализации строительства. Результаты научно-исследовательских работ, в большом объёме развёрнутых в НИИ бетона и железобетона, позволили улучшить качественные характеристики бетона (Б. Г. Скрамтаев и др.), внедрить предварительно напряжённые конструкции, обладающие повышенной жёсткостью и трещиностойкостью, использовать эффективные виды арматурной стали.

  Всесторонние исследования были проведены с целью создания искусств. пористых заполнителей и на их основе — конструктивно-теплоизоляционных, лёгких и ячеистых бетонов (Н. А. Попов и др.). В 50-х гг. начались разработка и внедрение бетонов специальных видов (гидротехнического, жаростойкого, кислотоупорного и др.), созданы теоретические основы долговечности бетона (В. М. Москвин и др.). Разработаны научные основы и практические рекомендации по ведению бетонных работ при отрицательных температурах (С. А. Миронов, В. Н. Сизов и др.).

  Большое влияние на развитие форм стальных конструкций оказали достижения в области сварки. Изучение прочности сварных соединений, особенно исследования Института электросварки им. Е. О. Патона, а также разработка методов автоматической сварки обеспечили её надёжность и технологичность. Сварка стала основным способом соединения элементов стальных конструкций. При этом заметно упростилась форма конструкций, снизились их масса и трудоёмкость изготовления.

  В 50-х гг. начались теоретические и экспериментальные исследования клеёных деревянных конструкций, послужившие основой создания индустриальных методов изготовления таких конструкций. С конца 60-х гг. конструкции из клеёной древесины уже применялись в значит. объёме, преимущественно в сельскохозяйственных зданиях и промышленных зданиях с химически агрессивной средой.

  В строительной механике в связи с требованиями облегчения и повышения гибкости конструкций интенсивно разрабатывались вопросы устойчивости (А. Ф. Смирнов, А. С. Вольмир, В. В. Болотин и др.). Задача более полного использования прочности материалов обусловила необходимость исследования работы конструкций за пределами упругости и разработку соответственных методов расчёта. Весьма плодотворным оказался метод предельного равновесия, разработанный на основе фундаментальных исследований Гвоздева. Для решения широкого класса задач нашла применение теория расчёта составных стержней (А. Р. Ржаницын). Получили развитие методы расчёта оболочек (Власов, А. Л. Гольденвейзер и др.). Методы расчёта каркасных и крупнопанельных зданий, разработанные как для обычных, так и для особых условий возведения (районы сейсмической активности, просадочные грунты, горные выработки и т.п.), обеспечили возможность массового строительства этих зданий. Разработаны и внедрены методы расчёта строит. конструкций на динамические нагрузки от машин и оборудования новых видов, ветра, морского волнения и т. п. Создана теория виброизоляции и виброгашения. Достижения динамики сооружений были использованы при разработке методов расчёта сооружений на сейсмические воздействия (К. С. Завриев и др.). Значит. развитие получили исследования в области статистических (вероятностных) методов оценки надёжности конструкций и сооружений (Н. С. Стрелецкий, Болотин). Крупнейшим достижением советской строительной науки, получившим признание во всём мире, является создание принципиально нового метода расчёта конструкций по предельным состояниям (Стрелецкий, В. М. Келдыш, Гвоздев, И. И. Гольденблат и др.). Введение этого метода в строительные нормы и правила в качестве основополагающего расчётного принципа ознаменовало собой переход к высокоэкономичному проектированию конструкций. Применение нового метода обеспечивает необходимую надёжность сооружений и существенно снижает расход материалов.

  Успешному развитию строит. механики во многом способствовало внедрение средств вычислит. техники. Применение ЭВМ для решения сложных и трудоёмких задач началось в 60-х гг., оно обусловило развитие численных методов расчёта и широкое использование в расчётной практике теории матриц (А. Ф. Смирнов). Без применения ЭВМ и разработки необходимого математического аппарата оказалось бы невозможным не только решение, но и сама постановка многих задач современной строительной механики. Большое достижение в области механики грунтов — теоретическое обоснование новой расчётной схемы основания, точнее отражающей реальные условия работы грунта. С помощью этой модели были разработаны экономичные методы расчёта свайных фундаментов в мёрзлых грунтах и оснований под опорами глубокого заложения.

  В области строит. физики проведены комплексные исследования теплои звукоизоляции и долговечности ограждающих конструкций для новых типов зданий, в том числе крупнопанельных, что позволило обеспечить высокую эксплуатационную надёжность последних.

  Основная задача современной строительной науки — изыскание резервов снижения расхода материалов, а также стоимости, трудоёмкости и сроков строительства при одновременном повышении качества конструкций, зданий и сооружений. Значительную роль в решении этой задачи отводится методам расчёта зданий и сооружений как единых пространственных систем. В 70-х гг. начата разработка таких методов (с использованием ЭВМ). Получают дальнейшее развитие метод предельных состояний и теория надёжности, что создаёт необходимые условия для перехода к расчёту зданий и сооружений вероятностными методами. Повышение качественных характеристик бетона в железобетонных конструкциях, создание быстротвердеющих бетонов, не требующих тепловой обработки для ускорения их твердения, увеличение объёма применения и улучшение свойств лёгких и ячеистых бетонов — одна их первоочередных задач строит. науки. В 10-й пятилетке в строительстве всё шире применяются предварительно напряжённые и комбинированные конструкции, внедряются лёгкие и облегчённые конструкции из клеёной древесины, асбестоцемента, пластмассы, лёгких сплавов и др.

  Международные связи Советского Союза в области строительства осуществляются как по линии непосредственного двустороннего сотрудничества с зарубежными странами, так и в форме участия советских учёных в деятельности международных организаций по строительству (международные общества механики грунтов и фундаментостроения, международные ассоциации по антисейсмическому строительству, международные федерации по предварительно напряжённому железобетону). Ряд важных исследований проводится советскими специалистами в рамках СЭВ.

  Периодические издания: «Бетон и железобетон» (с 1955), «Механизация строительства» (с 1939), «Основания, фундаменты и механика грунтов» (с 1959), «Строительная механика и расчёт сооружений» (с 1959), «Строительные материалы» (с 1955) и др.

  См. также Полносборное строительство, Строительство.

  И. Г. Васильев, Г. Ш. Подольский.

Технические науки
Авиационная наука и техника
Ракетостроение и космонавтика
Энергетическая наука и техника
Электротехника
Электроника, радиотехника и электросвязь
Техническая кибернетика.
Вычислительная техника
Машиноведение и технология производства машин
Металлургическая наука, техника и технология
Строительная наука и техника
Так же Вы можете узнать о...


Раздельная уборка зерновых культур, метод уборки, состоящий из двух фаз: скашивания хлебной массы и укладки её в валки для сушки и дозревания зерна; подбора валков и обмолота.
Рислинг (нем. Riesling), Р. рейнский, Рислинок, винный сорт винограда среднего периода созревания.
Салары

(самоназвание — салар, салыр), тюркоязычный народ в Китае; живут в Саларском автономном уезде и других районах провинции Цинхай, а также в провцинции Ганьсу и Синьцзян.
Селектор (лат. selector — сортировщик, от seligo — избираю, выбираю), электромеханическое устройство для приёма вызова в избирательной телефонной связи (селекторной связи) преимущественно на ж.
Скил (греч. Skyles), скифский царь 5 в. до н.
Софистика (от греч. sophistike — умение хитро вести прения), 1) философское течение в Древней Греции, созданное софистами.
Страницкий Йозей Антон Страницкий (Stranitzky) Йозей Антон [около 1676, Штирия (?), — 19.
Тамань, Таманская, станица Темрюкского района Краснодарского края, порт на берегу Таманского залива Керченского пролива.
Типографские сплавы, сплавы цветных металлов, применяющиеся для изготовления литых стереотипов и элементов набора (шрифты, пробельные материалы, линейки и т.
Трюк (французское truc), ловкий, искусный приём, неожиданное или контрастное действие.
Урумчи (кит. название – Дихуа), город в северо-запад Китае, у северного подножия Тянь-Шаня, на р.
Фитолеймы (от фито... и греч. leimma – остаток), обугленные или слабоизменённые ископаемые остатки растений, иногда сохраняющие клеточное строение.
Ханчерлиоглу Орхан Ханчерлиоглу (Hancerlioglu) Орхан (р. 1916, Стамбул), турецкий писатель.