СССР. Технические науки Ракетостроение и космонавтикаБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Ракетостроение и космонавтика В 19 в. в русской армии с успехом применялись боевые пороховые ракеты (А. Д. Засядко, К. И. Константинов и др.). С середины 19 в. отечественные изобретатели и конструкторы начали работать над возможностью применения принципа реактивного движения к летательным аппаратам (И. И. Третеский, Н. М. Соковнин, Н. А. Телешов). В их проектах аппараты нуждались в атмосфере как в опорной среде и предназначались лишь для полётов в низших её слоях. Совершенно на ином принципе был основан летательный аппарат Н. И. Кибальчича: подъёмная сила создавалась при помощи порохового ракетного двигателя, действие которого практически не зависело от состава окружающей среды. Предложенный им «воздухоплавательный прибор» (1881) был, по существу, первым в России проектом ракетного летательного аппарата, принципиально пригодного для полётов в безвоздушном пространстве. Первым, кто научно доказал возможность использования реактивного движения для полётов в космосе, был К. Э. Циолковский. В статье «Исследование мировых пространств реактивными приборами» (1903) и в последующих работах он обосновал реальность технического осуществления космических полётов, указал пути развития ракетостроения и космонавтики, дал схемы жидкостных ракет и ракетных двигателей (ЖРД). Высказанные Циолковским технические идеи находят применение при создании современных ракетных двигателей, ракет и других космических аппаратов. Помимо работ Циолковского, вопросам теории реактивного движения были посвящены исследования Н. Е. Жуковского (с 1882), И. В. Мещерского (с 1897) и других учёных. К концу 19 в. в России было предложено свыше 10 проектов реактивных летательных аппаратов (Ф. Р. Гешвенд, А. П. Федоров и др.). После Октябрьской революции 1917 экспериментальные работы в области ракетной техники стали проводиться с 1921 в Газодинамической лаборатории (ГДЛ), в которой создавались и с 1928 испытывались в полёте ракеты на бездымном порохе (Н. И. Тихомиров, В. А. Артемьев, Г. Э. Лангемак, Б. С. Петропавловский), а с 1929 начаты работы по электрическим и жидкостным ракетным двигателям (В. П. Глушко). В 1926—29 Циолковский дополнил свои исследования по космонавтике; проблемой динамики ракетного полёта занимался В. П. Ветчинкин; многие вопросы теории космического полёта и ракетостроения нашли новое решение в трудах Ю. В. Кондратюка (1919—29); разработкой межпланетных полётов и проектированием космических летательных аппаратов занимался Ф. А. Цандер (1924—33). В 1932 в Москве была создана Группа изучения реактивного движения (ГИРД), осуществившая под руководством С. П. Королева в 1933 первые пуски советских жидкостных ракет конструкции М. К. Тихонравова и Цандера. В конце 1933 на базе ГДЛ и ГИРД был основан Реактивный институт научно-исследовательский (РНИИ), в котором развернулась широкая программа исследований, завершившаяся созданием многих экспериментальных управляемых и неуправляемых баллистических и крылатых ракет с жидкостными, твёрдотопливными, гибридными и комбиниров. ракетными двигателями, а также воздушно-реактивных двигателей. В 1937—39 была завершена проводившаяся в ГДЛ разработка твёрдотопливных реактивных снарядов (Лангемак, Артемьев, И. Т. Клейменов и др.); были созданы многозарядные самоходные пусковые установки с этими снарядами — «Катюши» (И. И. Гвай, В. Н. Галковский,А. П. Павленко и др.) и изготовлены их опытные образцы. В предвоенные годы в Советском Союзе сформировались основные направления в ракетостроении: создание ракет на жидких топливах (низкокипящих и высококипящих) и твёрдом топливе. В период Великой Отечественной войны 1941—45 был создан серийный образец «Катюши» и разработан ряд новых типов пусковых установок для Советской Армии и ВМФ (В. П. Бармин, В. А. Рудницкий, А. Н. Васильев и др.); велись также работы по созданию жидкостных ракетных ускорителей для серийных боевых самолётов (Глушко, Королев). Современное ракетостроение фактически создано в годы первых послевоенных пятилеток (1946—55). Необходимость развития этой отрасли техники и производства отмечалась на 1-й сессии Верховного Совета СССР 2-го созыва в марте 1946. Разработку образцов ракет нового типа приходилось вести одновременно с решением многих организационных задач. Наряду с расширением и реконструкцией действующих заводов был построен ряд крупных НИИ, КБ, заводов, полигонов, были привлечены институты АН СССР, ЦАГИ и другие научные центры. В короткие сроки, используя отечеств. и зарубежный опыт, была создана и 10 октября 1948 успешно стартовала первая советская управляемая баллистическая ракета с дальностью около 300 км (Р-1). В конце 40-х гг. над вопросами проектирования и изготовления ракет работали 13 НИИ и КБ, 35 заводов. На базе Р-1 было разработано несколько вариантов высотных научно-исследовательских геофизических ракет. С 1949 начала осуществляться последовательная программа изучения верхних слоев атмосферы с помощью зондирующих ракет, получивших название «академических». Организованная при Президиуме АН СССР Комиссия (председатель А. А. Благонравов) определила содержание этой программы и руководила практическими мероприятиями по её реализации. В 1951 состоялся первый запуск специальной вертикально стартующей зондирующей ракеты. В полёте впервые участвовали живые существа (две подопытные собаки). В этом же году созданы метеорологические ракеты типа МР-1. Планомерное изучение верхней атмосферы Земли стало первым шагом на пути подготовки комплекса исследований космического пространства и его освоения; для этих целей применялись ракеты 1РА-Е, В2А, В5В и др. В связи с развернувшимися в начале 50-х гг. работами по созданию межконтинентальных баллистических ракет (МБР) и ракет-носителей (РН) 15 мая 1955 было принято решение о строительстве космодрома Байконур — одного из крупнейших космодромов Советского Союза. 21 августа 1957 прошла испытание первая в мире МБР (Р-7), а 4 октября того же года модифицированным вариантом этой ракеты был запущен первый искусств. спутник Земли (ИСЗ) — началась космическая эра. Запуск первого ИСЗ показал, что выбраны правильные пути решения таких проблем космического полёта, как создание ракетных двигателей, систем управления и автоматики РН, баллистики полёта. Принципиальным достижением советской космонавтики явилось получение первой космической скорости (около 8 км/сек). На 2-м ИСЗ (выведен на орбиту 3 ноября 1957) впервые в космосе были проведены биологические исследования, а также исследования космических лучей и коротковолновой радиации Солнца. Возникла новая область науки — космическая физика. 15 мая 1958 запущен 3-й ИСЗ — первая автоматическая научная станция. Впервые проведены прямые измерения магнитного поля Земли, мягкой корпускулярной радиации Солнца, химического состава и давления атмосферы, электронной концентрации ионосферы, плотности распределения метеорного вещества вокруг Земли. В качестве источника энергии впервые в СССР применены солнечные батареи. После запусков первых ИСЗ и начавшегося развития исследований околоземного космического пространства одним из важнейших шагов космонавтики явилась подготовка к осуществлению полётов человека в космос (с этой целью с 15 мая 1960 по 25 марта 1961 на орбиту вокруг Земли было выведено 5 кораблей-спутников). 12 апреля 1961 — день первого космического полёта Ю. А. Гагарина на корабле «Восток», начало эпохи непосредственного проникновения человека в космос. С каждым последующим полётом увеличивалась их продолжительность, возрастал и объём работ, выполнявшихся космонавтами. Суточный полёт вокруг Земли совершил Г. С. Титов, трое суток продолжался совместный групповой полёт космонавтов А. Г. Николаева и П. Р. Поповича. Ю. А. Гагарин (с картины художника В. И. Шаршакова). В июне 1963 были совершены многосуточные полёты В. Ф. Быковского и первой женщины-космонавта В. В. Терешковой. Одновременно велись работы по созданию многоместного корабля «Восход», первые испытания которого (октябрь 1964) провели В. М. Комаров, К. П. Феоктистов, Б. Б. Егоров. В марте 1965 на орбиту выведен корабль «Восход-2», пилотируемый П. И. Беляевым и А. А. Леоновым, совершившими первый эксперимент по выходу человека в космос. Необходимость тщательной отработки техники маневрирования в космосе привела к созданию космических аппаратов, способных совершать заданный маневр (помимо посадки). Запуски таких аппаратов («Полёт-1» и «Полёт-2») осуществлены в 1963—64. Развитие космической техники на всех этапах опиралось на исследования в области механики космического полёта и прикладной небесной механики. Выполнены исследовательские работы по динамике движения космических аппаратов, навигации и управлению, баллистическому проектированию. Проведено уточнение ряда астрономических постоянных по данным наземных наблюдений за движением спутников. Полёты космических ракет к Луне и планетам Солнечной системы в СССР начаты 2 января 1959, когда первая автоматическая межпланетная станция (АМС) вышла из поля тяготения Земли, прошла на расстоянии около 7500 км от поверхности Луны и вышла на орбиту вокруг Солнца, став его первым искусств. спутником. Впервые была достигнута вторая космическая скорость (около 11,2 км/сек). На 1 января 1977 выведено в космос 24 АМС серии «Луна», с помощью которых впервые получены фотографии обратной стороны Луны, совершена первая мягкая посадка, переданы панорамы поверхности, создан первый искусственный спутник Луны, трижды доставлены на Землю образцы лунного грунта, а на Луну — самоходные аппараты «Луноход-1» и «Луноход-2». С помощью АМС, запускаемых в сторону Венеры (с 1961) и Марса (с 1962), а также аппаратов серии «Зонд» (1964—70) собран обширный материал, необходимый для обеспечения надёжности, конструирования и управления АМС и их радиосвязи с Землёй в дальних и продолжит, полётах. На станции «Зонд-2» в системе ориентации испытаны электроракетные плазменные двигатели. На АМС «Зонд-3, -6, -7, -8» были получены высококачественные изображения лунной поверхности. АМС «Марс-2» и «Марс-3» выполнили ряд научных исследований космического пространства на трассе Земля — Марс, Марса и околопланетного пространства с орбиты искусственного спутника планеты. Отделившаяся от «Марса-2» капсула впервые достигла этой планеты, а спускаемый аппарат «Марса-3» совершил мягкую посадку и передал сигналы с её поверхности. В 1973 впервые полёт по межпланетной трассе одновременно совершили 4 АМС; станция «Марс-5» стала 3-м советским искусственным спутником Марса, а АМС «Марс-6» достигла его поверхности. «Луноход-2». Крупные успехи получены в изучении Венеры. Наземные наблюдения планеты велись регулярно, но основными характеристики её атмосферы, поверхности и облачного слоя оставались неизвестными. С появлением космических аппаратов открылись новые возможности: АМС «Венера-4» (1967) впервые провела прямые исследования атмосферы планеты (создана модель атмосферы), «Венера-5» и «Венера-6» (1969) вновь произвели зондирование венерианской атмосферы, что позволило уточнить её физико-химические характеристики. В 1970 «Венера-7» совершила первую мягкую посадку на планету и передала информацию с её поверхности. В эксперименте на «Венере-8», опустившейся на освещенной Солнцем стороне, впервые была решена задача исследования венерианского грунта в районе посадки, определения физических характеристик поверхностного слоя и распределения освещённости по высоте. С помощью АМС «Венера-9» и «Венера-10» получены первые телевизионные изображения поверхности и выведены первые искусств. спутники Венеры. Интенсивные исследования Венеры, Марса и Луны заложили основы новой науки — сравнительной планетологии. Советские учёные провели исследования околоземного космического пространства многими ИСЗ серии «Космос» (запускаемыми с 16 марта 1962), при помощи космической системы «Электрон» (1964), тяжёлых спутников серии «Протон» (1965—68) и высокоапогейных спутников «Прогноз» (с 1972). Одной из задач, которые возлагались на первые спутники серии «Космос», являлось изучение космического пространства с точки зрения радиационной опасности для полётов человека. На основании проведённых измерений потоков заряженных частиц подробно изучена трасса полётов космических кораблей и построены радиационные карты для различных высот. Выполнен цикл исследований ионосферы, получены данные об ионной и электронной концентрации, температуре ионов и электронов. Эти данные имели большое значение для изучения свойств ионосферной плазмы и вопросов связи между космическими кораблями. В течение длительного времени ведётся изучение галактических и солнечных космических лучей, их энергии и других параметров в окрестности Земли. Проводятся исследования инфракрасного и ультрафиолетового излучения Земли, необходимые для решения ряда геофизических вопросов, а также для отработки систем ориентации спутников. Осуществлен ряд запусков по программе мировой магнитной съёмки. Комплекс космических и геофизических исследований, выполненных с применением средств ракетно-космической техники, вызвал интенсивное развитие нового научного направления — физики солнечно-земных связей, занимающейся изучением механизмов воздействия Солнца на процессы в околоземном космическом пространстве, атмосфере и биосфере Земли. В середине 60-х гг. начата разработка многоместных пилотируемых космических кораблей-спутников «Союз», предназначенных для маневрирования, сближения и стыковки на орбите ИСЗ. С 1967 на орбиты выведено 23 корабля «Союз», в том числе 21 с космонавтами. Новый этап в развитии космонавтики начался с 19 апреля 1971, после запуска первой тяжёлой орбитальной станции «Салют». Их создание и эксплуатация позволяют проводить длительные эксперименты в космосе с участием специалистов и решать важные народно-хозяйственные и научные задачи. На 1 января 1977 полёты совершили 38 советских космонавтов на 30 кораблях (один полёт суборбитальный) и 4 орбитальных станциях типа «Салют». Многие космонавты совершили по два полёта, а В. А. Шаталов и А. С. Елисеев — по три. Старт ракеты-носителя с космическим кораблём «Союз». Для выполнения советской космической программы создано несколько типов 2-, 3и 4-ступенчатых РН различной грузоподъёмности (от нескольких сотен кг до десятков т на околоземной орбите): «Восток» (эксплуатируется с 1960), «Космос» (с 1962), «Протон» (с 1965) и др., запускаемых с нескольких космодромов Советского Союза. Эти РН эксплуатируются в различных модификациях. Для сообщения РН космических скоростей разработаны мощные ЖРД с уменьшенными габаритами. Их создание стало возможным благодаря реализации в камерах сгорания повышенных давлений за счёт использования принципиальных схем, практически исключающих потери на привод турбонасосных агрегатов. Разработка РН и ЖРД способствовала развитию термо-, гидрои газодинамики, теории теплопередачи и прочности, металлургии высокопрочных и жаростойких материалов, химии топлив, измерит. техники, вакуумной и плазменной технологии . Требования космической программы обусловили необходимость конструирования комплексных автоматический устройств при жёстких ограничениях, вызванных грузоподъёмностью РН и окружающими условиями космического пространства, что явилось дополнительным стимулом для развития совершенно новой отрасли техники — микроэлектроники и создания лёгких электронных систем. Новые методы компоновки электронной аппаратуры, миниатюризации габаритов, массы и потребления энергии этой аппаратурой были развиты для её использования в космосе. Быстрый прогресс теории управления способствовал решению сложнейших проблем динамики полёта, стабилизации ракеты. Были созданы разнообразные комплексы систем автоматического регулирования, ультраточные гироскопические и гироинерциальные системы с применением цифровых и аналоговых управляющих машин. К достижениям космической техники относятся также системы, обеспечивающие ориентацию с весьма высокой точностью космических аппаратов, системы жизнеобеспечения, комплекс средств мягкой посадки, солнечные батареи и др. Потребности в связи и дистанционном управлении на больших расстояниях привели к развитию высококачественных и высокоточных систем связи, которые способствовали развитию технических методов прослеживания и измерения движущихся космических аппаратов на межпланетных расстояниях, открыв новые области применения ИСЗ. Советские учёные впервые разработали системы космического телевидения и космической связи. Высокоинформативные телеметрические системы позволяют надёжно контролировать работу космических аппаратов и передачу научной информации с их борта на Землю. Большое практическое значение имеют ИСЗ в народном хозяйстве. С помощью спутников связи «Молния-1» (запускаются с 1965), «Молния-2» (с 1971), «Молния-1С», «Молния-3» (с 1974), «Радуга» (с 1975), телевизионного спутника «Экран» (с 1976) и сети наземных приёмных станций «Орбита» осуществляются передачи телевидения и многоканальная радиосвязь, успешно установлена международная телефонная связь. Создана специальная система приёма, оперативной обработки и распространения поступающей метеорология, информации («Метеор»). Практическое использование космической техники включает также географические, геологические и геофизические исследования, поиски полезных ископаемых, использование спутников для контроля за уровнем загрязнения атмосферы, Мирового океана, для навигации, сельского, лесного хозяйства и т. д. С 1957 развивается международное сотрудничество в области космических исследований. В 1966 для координации деятельности различных министерств и ведомств по разработке и выполнению международных программ решением Советского правительства был создан Совет по международному сотрудничеству в области исследования и использования космического пространства при АН СССР («Интеркосмос»). Наиболее крупные программы совместных работ СССР осуществляет со странами социалистического содружества, а также с Францией, США, Индией и др. В 1969—76 запущено 16 спутников серии «Интеркосмос». Свыше 10 французских и советско-французских научных экспериментов было выполнено на советских космических аппаратах типа «Луноход», «Марс», «Прогноз» и «Ореол». В апреле 1975 советской РН был запущен индийский спутник «Ариабата». В июле 1975 был проведён первый международный эксперимент с участием пилотируемых кораблей СССР и США по программе ЭПАС («Союз — Аполлон»), который явился важным шагом в развитии международного сотрудничества в исследовании и использовании космического пространства в мирных целях. На основе договорённости, достигнутой в 1976, в 1978—83 граждане социалистических стран, участвующих в программе «Интеркосмос», совершат полёты совместно с советскими космонавтами на советских космических кораблях и орбитальных станциях. Ракета-носитель с искусственным спутником Земли «Интеркосмос» перед пуском. В разработке и реализации программы изучения околоземного космического пространства, Луны и планет Солнечной системы участвуют многие научные учреждения АН СССР — Физический институт им. П. Н. Лебедева, Институт прикладной математики, Институт земного магнетизма, ионосферы и распределения радиоволн, Физико-технический институт им. А. Ф. Иоффе, Институт проблем управления, а также созданный в 1965 Институт космических исследований АН СССР. Выдающийся вклад в разработку теоретических проблем космонавтики, в решение принципиальных вопросов, касающихся реализации советской космической программы, в создание новых методов и средств исследования космического пространства внёс М. В. Келдыш. Пионером освоения космоса стал С. П. Королев. В 1957 под его рук. был создан первый ракетно-космический комплекс и запущен первый ИСЗ. Не ограничивая свою деятельность созданием РН и космических аппаратов, Королев осуществлял общее техническое руководство работами по первым космическим программам и стал инициатором развития ряда прикладных научных направлений, обеспечивающих дальнейший прогресс в создании РН и космических аппаратов. Большое значение для разработки средств изучения околоземного космического пространства имела деятельность виднейшего конструктора космических аппаратов и ракетно-космических систем М. К. Янгеля. Он и руководимый им коллектив внесли существенный вклад в развитие и создание базы международного сотрудничества социалистических стран в области спутниковых исследований. Разработка АМС серий «Луна», «Венера», «Марс», начатая под рук. Королева, была успешно продолжена Г. Н. Бабакиным, создавшим последующие конструкции этих сложнейших космических автоматов. Становление и развитие отечественного жидкостного ракетного двигателестроения, создание силовых установок современных космических ракет связано с именем одного из пионеров ракетно-космической техники В. П. Глушко. Мощные ЖРД, разработанные под его руководством, применяются на всех советских РН. В создание ЖРД космических станций и кораблей большой вклад сделан А. М. Исаевым, ЖРД верхних ступеней РН — С. А. Косбергом, систем управления многих РН — Н. А. Пилюгиным, стартовых комплексов многих РН — В. П. Барминым. Для развития и совершенствования космической техники важное значение имеют работы В. Н. Челомея. Значительный вклад в разработку и реализацию советской космической программы внесён также учёными Ю. А. Ишлинским, Б. Н. Петровым, Г. И. Петровым и др.; в изучение Луны и планет — А. П. Виноградовым; в осуществление программы медико-биологических космических исследований — В. В. Лариным, Н. М. Сисакяном, О. Г. Газенко и др. О масштабах работ, ведущихся по космонавтике в СССР, можно судить по количеству запущенных искусств. спутников Земли, Солнца, Луны, Марса и Венеры, число которых на 1 января 1977 составило около 1100. Периодические издания. Теоретические работы в области космической физики и астрономии, биологии и медицины, описания приборов для космических исследований и конструкций космических аппаратов публикуются в научных журналах АН СССР «Космические исследования» (с 1963), в «Вестниках АН СССР» (с 1931), вопросы космической науки и техники — в журналах «Земля и Вселенная» (с 1965), «Природа» (с 1912), «Авиация и космонавтика» (с 1918) и др. См. также Космонавтика,«Луна», «Марс», «Венера», «Восток», «Восход», «Союз», «Салют», «Молния», «Орбита», Лунный самоходный аппарат, ЭПАС, Космодром. Б. В. Раушенбах, Г. А. Назаров. Технические науки Авиационная наука и техника Ракетостроение и космонавтика Энергетическая наука и техника Электротехника Электроника, радиотехника и электросвязь Техническая кибернетика. Вычислительная техника Машиноведение и технология производства машин Металлургическая наука, техника и технология Строительная наука и техника |
||||||||||||||||||||||||||||||||||||||||||||||
|