СССР. Естественные науки МеханикаБольшая Советская Энциклопедия. Статьи для написания рефератов, курсовых работ, научные статьи, биографии, очерки, аннотации, описания.
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||||||||||||||||||||||
|
Механика Начало работ по механике в России относится к 1-й половине 18 в. и связано с организацией Петербургской АН в 1725 по указу Петра I. В 1722 вышел в свет первый русский учебник по механике «Наука статическая или механика» Г. Г. Скорнякова-Писарева. Большой вклад в развитие механики внесли работы Д. Бернулли и Л. Эйлера, которые, в частности, явились создателями теоретической гидродинамики идеальной жидкости. В 30-х гг. 18 в. в Петербурге были подготовлены «Гидродинамика» Д. Бернулли (1738) и двухтомная «Механика» Л. Эйлера (1736). В 19 в. центр тяжести исследований по механике в России переместился постепенно в университеты и высшие технические учебные заведения. В середине 19 в. в Петербурге работали М. В. Остроградский, П. Л. Чебышёв и др. Во 2-й половине 19 в. складывается московская школа механики, которая достигла расцвета в начале 20 в. под руководством Н. Е. Жуковского и С. А. Чаплыгина. Характерным для этой школы явилось сочетание математического подхода с разработкой прикладных задач. На рубеже 20 в. сформировалась петербургская инженерная школа (И. Г. Бубнов, В. Л. Кирпичёв, А. Н. Крылов, И. В. Мещерский, С. П. Тимошенко). Общая теория устойчивости движения механических систем, созданная А. М. Ляпуновым, явилась фундаментальным вкладом в развитие механики начала 20 в. После Октябрьской революции 1917 научные работы по механике значительно интенсифицировались. Крупнейшим учреждением, тесно связанным с развитием механики, стал созданный в Москве в 1918 Центральный аэрогидродинамический институт (ЦАГИ), которому в 1937 присвоено имя его основателя — Н. Е. Жуковского. Здесь в 30-х гг. под руководством Чаплыгина был создан крупнейший научный центр теоретических и экспериментальных исследований, который возглавил гидроаэромеханические исследования применительно к авиации, гидромашиностроению, кораблестроению, промышленной аэродинамике и др. Исследования по механике ведутся также в Институте проблем механики АН СССР (Москва), Институте теоретической и прикладной механики Сибирского отделения АН СССР (Новосибирск), в МГУ, ЛГУ, Ленинградском политехническом институте и других вузах, а также научно-исследовательских институтах АН союзных республик и в отраслевых институтах различных министерств и ведомств. Основным направлением исследований в 1-й половине 20 в. явилась механика сплошных сред. Значительный прогресс в этой области был связан вначале с приложениями к решению её задач методов теории функций комплексного переменного. В конце 60-х — начале 70-х гг. усилия учёных сосредоточены главным образом на углублении основных фундаментальных представлений о механических процессах, на более глубоком отражении физико-химической природы поведения и взаимодействия тел в экстремальных условиях, изучаются оптимальные режимы технологических процессов и инерциальных систем. Совершенствуются методы исследования на вычислительных машинах с разработкой стандартных программ решения новых задач механики. В СССР с 1960 регулярно проводятся Всесоюзные съезды по теоретической и прикладной механике. Широко развиты международные связи советских учёных-механиков. Начиная с 1-го Международного конгресса по механике (Нидерланды, 1924) советские учёные принимают участие в их работе. 13-й Международный конгресс по механике был проведён в Москве в 1972. Работы в этом направлении координируются созданным в 1956 Национальным комитетом СССР по теоретической и прикладной механике. Общая механика. Основными разделами аналитической механики, получившими развитие в 20 в., были теория устойчивости, тесно связанная с общими качественными методами исследования дифференциальных уравнений, а также выделившаяся в самостоятельный раздел механики теория управления. Существенный вклад в теорию устойчивости А. М. Ляпунова был внесён Н. Г. Четаевым, который, в частности, предложил эффективный метод построения функций Ляпунова и дал общую теорему о неустойчивости движения, получив на её основе обращение теоремы Лагранжа об устойчивости равновесия. Важные результаты были получены в развитии второго метода Ляпунова и в доказательстве теорем существования (Н. Н. Красовский, В. В. Румянцев и др.), в исследовании устойчивости в критических случаях (Г. В. Каменков, И. Г. Малкин), в развитии первого метода Ляпунова (Н. П. Еругин и др.). В классических разделах аналитической механики получено обобщение вариационного принципа Гаусса, проанализированы способы освобождения систем (Н. Г. Четаев, Н. Е. Кочин), разработана теория возмущений и устойчивости стационарных движений динамических систем (А. Н. Колмогоров, В. И. Арнольд), развита геометрия неголономных многообразий (В. В. Вагнер) и динамика неголономных систем, а также систем с неидеальными связями (Ю. И. Неймарк, Н. А. Фуфаев и др.). Широкое развитие, особенно после 30—40-х гг., получила динамика гироскопов и гироскопических систем (А. Н. Крылов, Б. В. Булгаков, А. Ю. Ишлинский, Е. Л. Николаи, Я. Н. Ройтенберг и др.), а также связанная с ней теория инерциальной навигации (А. Ю. Ишлинский и др.). Новые вопросы рассмотрены в динамике твёрдых тел с жидким наполнением (Н. Н. Моисеев, В. В. Румянцев и др.). В связи с изучением движения и ориентации искусственных спутников осуществляются исследования в области динамики космического полёта (Д. Е. Охоцимский, Т. М. Энеев и др.). Обширный раздел общей механики составляет теория колебаний. Основы теоретических и экспериментальных исследований нелинейных колебаний были заложены и развиты в конце 30-х — начале 40-х гг. в работах двух больших направлений Л. И. Мандельштама — Н. Д. Папалекси и Н. М. Крылова — Н. Н. Боголюбова, получивших мировое признание. Первое (А. А. Андронов, А. А. Витт, С. Э. Хайкин и др.) характерно использованием топологических методов качественной теории дифференциальных уравнений. А. А. Андронову принадлежат, в частности, основополагающие работы по теории автоколебаний и методу точечных отображений. Работы второго основаны на применении теории асимптотических разложений (Ю. А. Митропольский и др.). С приложениями в технике и с проблемами устойчивости, колебаний и гироскопических систем тесно связана теория управления, бурно развивающаяся с 50-х гг., истоки которой лежат в теории автоматического регулирования. Важнейшая современная проблема механики и смежных дисциплин — теория оптимального управления. К общей механике примыкают работы по теории машин и механизмов. Механика жидкости и газа. Исследования 20—30-х гг. по гидродинамике несжимаемой жидкости развивались преимущественно в духе классических работ школы Жуковского — Чаплыгина. В теории крыла продолжалось изучение обтекания профилей и решёток, была развита теория тонкого крыла, рассмотрен ряд простейших нестационарных задач, колебания крыла, круглого в плане; решены задачи об ударе тела о воду и о глиссировании (В. В. Голубев, М. В. Келдыш, Н. Е. Кочин, М. А. Лаврентьев, Л. И. Седов и др.). Получила развитие вихревая теория винта (В. П. Ветчинкин, Н. Н. Поляхов). В послевоенный период и особенно в 60—70-х гг. в связи с дальнейшим развитием теории и главным образом благодаря внедрению быстродействующих ЭВМ оказалось возможным анализировать сложные нестационарные задачи обтекания крыла с исследованием схождения вихревой пелены (С. М. Белоцерковский). Существенные результаты получены в гидродинамике течений со свободными поверхностями. Строго обоснованная теория поверхностных волн конечной амплитуды дана в 20-х гг. А. И. Некрасовым. Большой цикл исследований по линейной теории волн, в том числе приливных, и волновому сопротивлению проведён в 30-х гг. (М. В. Келдыш, Кочин, Л.Н. Сретенский и др.). Нелинейной теории волн посвящены работы Кочина, Н. Н. Моисеева, Я. И. Секерж-Зеньковича, Сретенского и др. Всемирно известные работы по теории качки корабля А. Н. Крылова получили дальнейшее развитие в трудах М. Д. Хаскинда. Достигнуты большие успехи в теории жидкостных струй (обтекание криволинейных препятствий — А. И. Некрасов, обтекание с возвратной струей — Д. А. Эфрос). Разработана теория кумулятивных зарядов, дан ряд строгих математических результатов в теории уединённой волны в струй М. А. Лаврентьевым. В аэродинамике дозвуковых скоростей начиная с конца 30-х гг. применяются методы аппроксимации адиабаты Чаплыгина: были даны приближённый метод расчёта обтекания профиля, а затем и строгие решения для линейной аппроксимации адиабаты (Седов, С. А. Христианович, И. М. Юрьев). В 1924—25 Кочин рассмотрел сильные разрывы в сжимаемом потоке. К 30-м гг. относится разработка метода характеристик для сверхзвуковых течений (Ф. И. Франкль). Работы 40-х гг. посвящены преимущественно линейной теории установившихся и неустановившихся течений, в том числе задаче о крыле конечного размаха (Е. А. Красильщикова). Последующие аналитические работы были направлены на качественное исследование точных уравнений и изучение течений, близких к известным строгим решениям (А. А. Никольский, Н. А. Слёзкин, С. А. Христианович и др.). В 50-х гг. проведён цикл работ по вариационным методам определения формы тел, обладающих экстремальными характеристиками. Существенные результаты получены в теории околозвуковых течений (С. В. Фалькович, Франкль). Самостоятельный раздел газовой динамики составили исследования течений с весьма большими сверхзвуковыми (гиперзвуковыми) скоростями (С. В. Валландер, В. В. Сычев, Г. Г. Чёрный и др.). В течение 60—70-х гг. развивается направление, связанное с разработкой численных решений задач о сверхзвуковом обтекании тел (в т. ч. с образованием зон дозвуковых скоростей) и течениях внутри каналов с помощью быстродействующих ЭВМ (К. И. Бабанко, О. М. Белоцерковский, С. К. Годунов, А. А. Дородницын и др.). Большое значение для развития численных расчётов имел метод интегральных соотношений Дородницына. Важным разделом газовой динамики является теория неустановившихся течений газа, получено решение задачи о сильном взрыве (Л. И. Седов, 1946), развита теория распространения взрывных волн, изучено распространение и структура фронта и физика ударных волн (Я. Б. Зельдович, А. С. Компанеец, Ю. П. Райзер, К. П. Станюкович и др.). Практическое значение имеет теория турбулентных струй и следов, развитая в работах Г. Н. Абрамовича, Л. А. Вулиса и др. Исследованы течения в дои сверхзвуковых струях, вытекающих в затопленное пространство, и спутные дои сверхзвуковой потоки. Рассматриваются однои двухфазные струи с учётом влияния неравновесных физико-химических превращений и нестационарности течения. В конце 60-х — начале 70-х гг. создана теория течения в существенно нерасчётных спутных сверхзвуковых струях (В. С. Авдуевский, Э. А. Ашратов, Е. Н. Бондарев, И. П. Гинзбург, М. Я. Юделович и др.). С конца 50-х гг. интенсивно развивается аэродинамика разрежённых газов (С. В. Валландер, М. Н. Коган и др.). Значит. успехов достигла гидродинамика вязкой жидкости. В связи с изучением взаимодействия потока жидкости и газа с твёрдыми телами проведены исследования в теории пограничного слоя (В. В. Голубев, Дородницын, Л. С. Лейбензон, Л. Г. Лойцянский, Н. А. Слёзкин и др.). Разработаны эффективные (однои многопараметрические) методы приближённого расчёта ламинарного пограничного слоя, развита теория турбулентного пограничного слоя и аэродинамика пограничного слоя в сверхзвуковом потоке. Развитие современной техники потребовало изучения теплообмена газа с твёрдым телом при движении с большими сверхзвуковыми скоростями, учёта в пограничном слое физико-химических процессов при весьма высоких температурах и разработки методов теплозащиты. Решена задача о теплообмене при течении в пограничном слое на плавящейся и испаряющейся поверхности с учётом неравновесных физико-химических превращений (В. С. Авдуевский, Н. К. Анфимов, Г. И. Петров, Ю. В. Полежаев, Г. А. Тирский и др.). Вкладом в теорию турбулентности явились работы по основам статистической теории, сделанные в 20-х гг. Л. В. Келлером и А. А. Фридманом, которые рассмотрели моменты связи характеристик турбулентного потока. А. Н. Колмогоров (1941) создаёт теорию локально изотропной турбулентности. Большой вклад в развитие теории турбулентности внесли работы Л. Г. Лойцянского, М. Д. Миллионщикова, А. С. Монина, А. М. Обухова, А. М. Яглома и др. Для многих разделов механики жидкости и газа существенным было использование методов подобия и размерности (Л. И. Седов). В 50-х гг. возник новый раздел гидроаэродинамики — магнитная гидродинамика, изучающая течения в электромагнитных полях и, в частности, динамику плазмы. Разрабатывается релятивистская магнитная гидродинамика, развиваются приложения применительно к задачам динамики полёта и расчётам различных магнитогидродинамических устройств (генераторов, сепараторов, движителей и др.). Из специальных разделов гидроаэродинамики серьёзных успехов достигла теория движения жидкостей и газов в пористых средах. Методы теории аналитических функций были систематически введены в гидродинамику грунтовых вод в 20-х гг. Н. Н. Павловским. Наиболее общие методы решения плоских задач теории движения грунтовых вод разработаны П. Я. Кочиной и С. Н. Нумеровым. Нестационарные задачи изучались Г. И. Баренблаттом, Н. Н. Веригиным и др. Основы подземной гидрогазодинамики применительно к нефтегазовой промышленности заложены Л. С. Лейбензоном и развиты Б. Б. Лапуком, В. Н. Николаевским, И. А. Чарным, В. Н. Щелкачёвым и др. В самостоятельную дисциплину выделилась динамика атмосферы и океана, изучающая движения воздушных и водных масс на больших территориях с учётом теплообмена и вращения Земли (см. раздел Метеорология). Широкий круг задач механики жидкости и газа связан с различными проблемами переноса (диффузия и массообмен, теплопередача и пр.) и движения смесей. В этой области, начиная с 60-х гг. получены важные результаты в находящейся на границе с физикой и химией теории горения и детонации (Я. Б. Зельдович, Л. Д. Ландау, Н. Н. Семенов, Р. И. Солоухин, К. И. Щёлкин и др.). В связи с разнообразными практическими задачами с 1920-х гг. интенсивно разрабатывалась гидравлика. Многочисленные исследования посвящены промышленной аэродинамике (Г. Н. Абрамович, А. С. Гиневский, И. П. Гинзбург, Г. Л. Гродзовский, Г. С. Самойлович, Г. Ю. Степанов, К. А. Ушаков и др.). Механика деформируемого твёрдого тела. В 30-е гг. работы в этой области велись главным образом по теории упругости и строительной механике. Были разработаны методы исследования плоской задачи теории упругости и задач о кручении и изгибе стержней с помощью теории функций комплексного переменного (Г. В. Колосов, Н. И. Мусхелишвили), оказавшие огромное влияние на последующее развитие многих смежных разделов механики. Важными для решения смешанных задач и задач для многосвязных областей были приложения методов интегральных уравнений (Н. И. Мусхелишвили, С. Г. Михлин, Д. И. Шерман). Комплексные представления плоской задачи были обобщены на случай анизотропных сред (С. Г. Лехницкий). Исследовались общие формы представления интеграла уравнений теории упругости с помощью трёх бигармонических и четырёх гармонических функций, что открыло путь к решению пространственных задач для толстых плит и оболочек (Б. Г. Галёркин, А. И. Лурье, П. Ф. Папкович). Был решен обширный класс задач о равновесии пластинок (Галёркин), завершены основы построения линейной теории оболочек (А. Л. Гольденвейзер, Н. А. Кильчевский, Лурье, Х. М. Муштари, В. В. Новожилов), предложены приближённые методы, сочетающие приёмы строительной механики и теории упругости (В. З. Власов). Исследование поведения балки под действием периодической продольно-поперечной нагрузки (Н. М. Беляев) способствовало появлению теории динамической устойчивости конструкций. Существенные результаты относятся к теории флаттера (М. В. Келдыш, Е. П. Гроссман). Значительное развитие получили приближённые способы, основанные на применении вариационных принципов. Особенно широкое распространение получил метод Бубнова — Галёркина. Наряду с теорией упругости в 30-х гг. начали развиваться новые дисциплины: теория пластичности, теория ползучести и механика грунтов. В теории пластичности были получены теоремы о верхней и нижней оценках несущей способности идеально пластических тел (А. А. Гвоздев). В механике грунтов исследования касались как сыпучих сред (А. А. Новоторцев, В. В. Соколовский), так и консолидации водонасыщенных грунтов (Н. М. Герсеванов, В. А. Флорин). Исследования в период Великой Отечественной войны относились к контактным задачам теории упругости (Л. А. Галин), теории оболочек (И. Н. Векуа, Власов, Гольденвейзер, Лурье, Новожилов, Ю. Н. Работнов), теорий вязко-упругости и пластичности (А. Ю. Ишлинский, Соколовский). Были получены первые решения упруго-пластических задач (Галин, Соколовский), развита деформационная теория пластичности и предложен метод последовательных приближений для решения её задач (А. А. Ильюшин), даны решения динамических задач о распространении упруго-пластических волн (Х. А. Рахмутулин, Г. С. Шапиро), развита теория распространения возмущений в водонасыщенных средах (Я. И. Френкель). С 50-х гг. центр тяжести исследований перешёл на новые разделы механики, хотя интенсивно продолжались работы и в классических направлениях. В теории упругости основные достижения относились к построению общей нелинейной теории (Новожилов, Л. И. Седов) и нелинейной теории оболочек (К. З. Галимов, Х. М. Муштари, А. В. Погорелов и др.). Были развиты новые подходы к общей теории упругой устойчивости — с позиций нелинейной (Новожилов) и линейной (Ишлинский) теории упругости, ляпуновской теории устойчивости (В. И. Зубов, А. А. Мовчан), а также статистических методов (В. В. Болотин, А. С. Вольмир, И. И. Ворович, А. Р. Ржаницын). Дальнейшие успехи были достигнуты в теории динамической устойчивости упругих систем под действием периодических сил (Болотин, И. И. Гольденблат и др.) и при динамическом нагружении (Ишлинский, М. А. Лаврентьев и др.). Разработаны эффективные методы решения задач о распространении упругих волн в слоистых средах (Л. М. Бреховских, В. И. Кейлис-Борок, Г. И. Петрашень и др.). Детально анализировались проблемы колебаний пластинок и оболочек, взаимодействующих с газом или жидкостью (Болотин, Э. И. Григолюк и др.). Предложены вариационные методы теории пластичности (Л. М. Качанов), развивалась теория устойчивости упруго-пластических тел (В. Д. Клюшников и др.). Интенсивные работы ведутся по теории ползучести металлов, бетона и полимеров (Н. Х. Арутюнян, А. А. Гвоздев, Ильюшин, Качанов, Работнов и др.). Появились обширные исследования по механике композитных сред (Болотин, А. Л. Рабинович, Работнов и др.). Периодические издания: «Прикладная математика и механика» (с 1933), «Известия Академии наук СССР» — «Отделение технических наук» (1937—58), «Механика и машиностроение» (1959—64), «Механика» (с 1965), «Механика жидкости и газа» (с 1966), «Механика твёрдого тела» (с 1966), «Прикладная механика» (с 1955), «Журнал прикладной механики и технической физики» (с 1960), «Магнитная гидродинамика» (с 1965), «Механика полимеров» (с 1965), «Проблемы прочности» (с 1969). См. Газовая динамика, Гидравлика, Гидроаэромеханика, Инерциальная навигация, Механика, Упругости теория. Химические науки Развитие химии в России началось в середине 18 в. М. В. Ломоносов заложил основы единой корпускулярно-кинетической теории, сформулировал закон сохранения вещества и движения, выполнил множество научных опытов и прикладных исследований по химии. Он же первый дал определение физической химии как науки, объясняющей «на основании положений и опытов физики, что происходит в смешанных телах при химических операциях». С 1-й половины 19 в. успешно развивалось использование физических методов в химии. В. В. Петров осуществил (1803) первые химические реакции в электрической дуге. Б. С. Якоби разработал (1838) основы гальванотехники. Исследования микроструктуры сталей были начаты П. П. Аносовым в 1831. Изучение тепловых явлений, сопровождающих химические реакции, получило прочную основу после открытия Г. И. Гессом (1840) основного теплового закона химических процессов. Развитию термохимии во многом способствовали последующие работы Н. Н. Бекетова и В. Ф. Лугинина. В области неорганической химии с середины 19 в. проводились работы по изучению природного сырья, свойств элементов и их соединений, в частности платиновых металлов, был открыт новый элемент рутений (К. К. Клаус, 1844). Успешно разрабатывались методы изучения и синтеза органических веществ; были синтезированы, например, хинон (А. А. Воскресенский, 1838) и анилин (Н. Н. Зинин, 1842). Созданная А. М. Бутлеровым (1861) теория химического строения стала фундаментом органической химии. Развивая теорию Бутлерова, В. В. Марковников установил (1869) порядок присоединения различных веществ к ненасыщенным углеводородам. Открытие Д. И. Менделеевым (1869) периодического закона, представляющего собой эпоху в развитии химической науки, послужило основанием систематики всех химических элементов и их соединений; одним из следствий этого закона было предсказание существования ряда неизвестных тогда элементов и описание их свойств. Исследования, направленные на обоснование периодического закона, стимулировали развитие представлений о сложном строении атома и его делимости. Большое значение имели исследования растворов, выполненные Д. И. Менделеевым (1865—87), а также Д. П. Коноваловым, установившим (1881—84) связь между составом жидкого раствора и составом и давлением насыщенного пара. Применению учения о химическом равновесии к различным физико-химическим системам были посвящены работы Н. С. Курнакова, которые наряду с исследованиями других авторов легли в основу физико-химического анализа, сложившегося в конце 19 — начале 20 вв. Исследования зависимости скоростей реакций от состава реагентов и природы растворителя, выполненные Н. А. Меншуткиным (1870—90), имели большое значение для формирования химической кинетики, получившей дальнейшее развитие в работах А. Н. Баха, Н. А. Шилова и др. (конец 19 — начало 20 вв.). В 1903 М. С. Цвет открыл метод хроматографии. В 1906 Л. А. Чугаев установил важные закономерности образования комплексных соединений. Труды В. В. Марковникова (с 1881) и Н. Д. Зелинского (с 1886) весьма существенно способствовали развитию органической химии и легли в основу новой области химии — нефтехимии. В 80-е гг. 19 в. А. Е. Фаворским начаты работы по изучению непредельных углеводородов. Синтезом сульфопроизводных антрахинона (1891) М. А. Ильинский положил начало химии антрахиноновых красителей. Г. С. Петров разработал и осуществил (1913) промышленное производство фенолоформальдегидной смолы — карболита. Крупный вклад в развитие методов синтеза органических соединений в конце 19 — начале 20 вв. внесли А. М. Зайцев, Г. Г. Густавсон, В. Н. Ипатьев и др. Основополагающие работы в области геохимии были выполнены В. И. Вернадским и А. Е. Ферсманом, агрохимии и фотосинтеза — Д. Н. Прянишниковым и К. А. Тимирязевым. Широкие и систематические исследования в области химии и химической технологии развернулись только в годы Советской власти. Уже в 1918—19 были организованы Институт физико-химического анализа, Институт по изучению платины и других благородных металлов, Центральная химическая лаборатория ВСНХ (ныне Физико-химический институт им. Л. Я. Карпова), Институт прикладной химии, а в начале 1920-х гг. — Химико-фармацевтический институт, Институт чистых химических реактивов и др. Одной из задач ленинского плана ГОЭЛРО (1920) явилась химизация народного хозяйства путём ускоренного развития химической промышленности, увеличение её продукции в 1920—30 в 2,5 раза против уровня 1913. Для руководства восстановлением и развитием химической промышленности В. И. Ленин привлек выдающихся химиков страны, вместе с которыми решал вопросы организации новых научных учреждений и создания органов управления химическими заводами. В. И. Ленин непосредственно изучал возможности увеличения производства химических продуктов, был инициатором создания коксохимической промышленности Кузбасса, освоения соляных богатств Сибири и Кара-Богаз-Гола, поиска фосфоритов и калийных солей, организации производства радиевых препаратов и т. д. Большую помощь Ленину в этом оказывал Н. П. Горбунов (в то время управляющий делами СНК, химик по образованию, ученик Л. А. Чугаева). Исключительно важную роль в развитии химии в СССР сыграли решения партии и правительства, в частности постановление ЦК ВКП(б) о работе Северного химического треста (1929), постановления пленумов ЦК КПСС, партийных съездов и конференций. Большое значение имели решения майского Пленума ЦК КПСС (1958), в которых указывались конкретные задачи по созданию высокопроизводительных процессов получения синтетических материалов, удобрений и других химических продуктов и меры по обеспечению решения этих задач. С развитием народного хозяйства и культуры изменилась география химических научных учреждений. Освоение природных богатств Сибири и Дальнего Востока, резкое повышение образовательного уровня и появление собственных научных кадров в национальных республиках обусловили расширение сети и децентрализацию научных учреждений. Разработка комплексных проблем химии и химической технологии стала осуществляться по координированным планам научно-исследовательских институтов. Физическая химия. Исследования, проводимые в СССР, охватывают все разделы физической химии. Большой вклад в развитие химической кинетики внесён Н. Н. Семеновым и его учениками. В 1926—33 этой школой была создана современная теория цепных реакций. Выдвинута идея о разветвленных цепных реакциях, позволившая объяснить резкое изменение скоростей химических процессов от почти неизмеримо медленных до воспламенения смеси реагентов («цепной взрыв») при малом изменении внешних параметров системы («критические явления»). Н. Н. Семеновым развиты представления об обрыве цепей на стенке и в объёме сосуда. В дальнейшем изучение механизмов цепных разветвленных реакций было выполнено на примерах окисления фосфора (Ю. Б. Харитон, З. С. Вальта), водорода (Н. Н. Семенов, В. Н. Кондратьев, А. Б. Налбандян, В. В. Воеводский), сероуглерода (Н. М. Эмануэль). В. Н. Кондратьевым обнаружены сверхравновесные концентрации атомов Н и радикалов OH в пламени водорода, что явилось первым подтверждением теории цепных реакций. Разработаны тепловая теория распространения пламени (Я. Б. Зельдович, Д. А. Франк-Каменецкий, Н. Н. Семенов) и теория детонации (Я. Б. Зельдович). Тепловая теория применена для объяснения горения конденсированных систем (А. Р. Беляев). Советские физико-химики создали основы теории турбулентного горения. Исследование газофазного фторирования привело к открытию нового типа цепных процессов — реакций с энергетическим разветвлениями цепей, в которых генерирование свободных радикалов происходит в реакциях возбуждённых частиц, образующихся в экзотермических актах продолжения цепи (А. Е. Шилов, Н. Н. Семенов). Экспериментальное подтверждение возможности осуществления «энергетических цепей» (продолжение цепи с участием возбуждённых частиц) получено в работах С. М. Когарко с сотрудниками. Открыто (А. Д. Абкин и В. И. Гольданский) явление протекания химических реакций вблизи абсолютного нуля. В. И. Гольданским впервые показано существование туннельных переходов целых молекулярных групп в химических реакциях. Большое развитие получили исследования медленных цепных реакций с вырожденным разветвлением цепей (Н. М. Эмануэль). Создана полная количественная схема механизма автоокисления углеводородов в жидкой фазе: открыты и на количеств. уровне изучены новые элементарные реакции зарождения, продолжения и разветвления цепи окисления. Обнаружено и объяснено существование критических явлений при жидкофазном окислении, установлено влияние гетерогенных факторов на механизм таких процессов. Е. А. Шиловым высказана идея об образовании в органических реакциях промежуточных циклических комплексов. Важные исследования в области физики элементарного акта химической реакции выполнены Я. К. Сыркиным. Первые работы в СССР по теории катализа принадлежат Н. Д. Зелинскому и его ученикам (А. А. Баландин, Б. А. Казанский и др.). А. А. Баландиным развита мультплетная теория катализа. Электронная теория катализа на полупроводниках развита С. З. Рогинским и Ф. Ф. Волькенштейном. Гипотеза о возможности цепного механизма гетерогенно-каталитических реакций выдвинута Н. Н. Семеновым, В. В. Воеводским и Ф. Ф. Волькенштейном. В. А. Ройтером наряду с Д. А. Франк-Каменецким, Г. К. Боресковым и др. разработаны основы макрокинетики гетерогенно-каталитических процессов (1930—60). М. И. Тёмкиным предложены теории кинетики реакций на неоднородных поверхностях и кинетики многостадийных стационарных реакций (в том числе и каталитических), которые использованы для описания ряда промышленно важных процессов (синтез аммиака, окисление этилена и др.). В 1964 открыто явление сопряжения реакций отщепления и присоединения водорода на мембранных катализаторах, проницаемых для водорода (В. М. Грязнов, В. С. Смирнов и сотрудники). Большую роль в развитии теории катализа сыграли исследования макрокинетики, выполненные с учётом диффузии и «физико-химической гидродинамики». Изучение промышленных катализаторов и создание новых методов их исследования успешно проводятся в АН Азербайджанской ССР (школа М. Ф. Нагиева) и Казахской ССР (Д. В. Сокольский). Советские химики внесли значительных вклад в изучение гомогенно-каталитических реакций, в частности разработали теорию гомогенного катализа карбоновыми кислотами и другими донорно-акцепторными веществами в органических растворителях (Е. А. Шилов и др.). М. Е. Вольпин и А. Е. Шилов показали возможность фиксации атмосферного азота на металлоорганических катализаторах. В результате исследования p-комплексов металлов платиновой группы Я. К. Сыркиным и сотрудниками осуществлено окисление олефинов до карбонильных соединений. Развёрнуты работы в области структурного и функционального моделирования биокаталитических систем (И. В. Березин и др.). Проводятся систематические исследования радиационно-химических процессов. Теория радиационно-химического окисления создана Н. А. Бах, С. Я. Пшежецким и др. Применение метода электронного парамагнитного резонанса позволило исследовать промежуточные частицы, образующиеся под действием излучения, установить образование стабилизированных электронов в замороженных облученных растворах (В. И. Спицын). С 1960 успешно развиваются исследования в области плазмохимии. Установлены общие принципы и количеств. соотношения неравновесной кинетики, созданы основы плазмохимические технологии получения ацетилена, пигментной TiO2, материалов для микроэлектроники и др. Исследованы химические превращения под воздействием ударных волн. Показана возможность использования ударного сжатия для получения алмаза, нитрида бора и других материалов. Изучены химические последствия ядерных процессов. Установлены пути стабилизации «горячих» атомов трития, углерода, азота и других элементов (в различных фазах и средах). Положено начало химии позитрона и позитрония, мюония, а также химии мезоатомов и мезомолекул. Основополагающие работы в области фотохимии выполнены А. Н. Терениным, который впервые дал чёткое представление о механизме первичного акта фотохимической реакции. Открыт эффект влияния лёгких газов на интенсивность поглощения света сложными молекулами, предложена рациональная классификация на основе внутримолекулярных взаимодействий электронных и колебательных состояний, проведено спектральное изучение межмолекулярных взаимодействий в конденсированных средах и решен вопрос о влиянии растворителей на интенсивность молекулярных спектров. Открытие Терениным (1924) расщепления молекул солей на атомы под действием света содействовало успешному развитию спектроскопии молекул. Исследованиям ИК-спектров и спектров комбинационного рассеяния посвящены работы М. В. Волькенштейна. В. Н. Кондратьев развил учение (1940-е гг.) об элементарных процессах при химических превращениях под действием света. Изучены механизмы фотоионизации в газовой фазе многих фотохимических реакций. Осуществлены фотохимические синтезы многих веществ с заданными свойствами — полиметилметакрилатных стекол (С. Р. Рафиков), сенсибилизаторов (А. И. Киприянов, И. И. Левкоев), ряда фотохромных соединений, полупроводников. Разработана новая химическая система усиления светового сигнала на основе ферментативных реакций. Большой вклад в развитие электрохимии внесла школа А. Н. Фрумкина. Ещё в 1920-е гг. в его работах были объединены вопросы электрохимии и учения об электрокапиллярных явлениях. Было описано состояние адсорбированного слоя (изотерма Фрумкина) в зависимости от скачка потенциала на границе раздела металл — раствор и развита теория двойного электрического слоя; созданы основы современной электрохимической кинетики; введена в науку новая характерная для металлических электродов константа — потенциал нулевого заряда. Я. М. Колотыркин выявил роль комплексообразования в процессах коррозии, установил участие молекул воды в электрохимических стадиях растворения металлов и предложил ряд методов противокоррозионной защиты (1950—70-е гг.). В 1960—70-е гг. достигнуты успехи в исследовании элементарных актов электрохимических процессов на основе квантово-механической теории. Б. П. Никольским и его школой создана теория возникновения потенциала на ионоселективных мембранах и разработаны новые типы электродов. Школой П. А. Ребиндера разработан ряд новых областей коллоидной химии, в том числе современная физическая химия поверхностно-активных веществ и физико-химическая механика дисперсных систем. Открыто явление облегчения деформации твёрдых тел и понижения их прочности под влиянием активной среды или малых добавок адсорбирующихся веществ (эффект Ребиндера), развиты новые представления о типах пространственных структур в дисперсных системах, установлен ряд реологических особенностей дисперсных систем. Б. В. Дерягин открыл расклинивающее давление тонких слоев в коллоидных системах. Это явление легло в основу теории устойчивости лиофобных растворов, позволило объяснить механизм флотации минеральных частиц и усовершенствовать теорию электрофореза. Систематические исследования адсорбции проводятся под руководством М. М. Дубинина, продолжившего работы Н. А. Шилова. В результате создана практически универсальная количественная теория сорбции — теория объёмного заполнения. Получены важные результаты по кинетике адсорбции, установлен механизм физической и химической сорбции во многих системах, разработаны методы определения активности и величины поверхности сорбентов. Начало учению о растворах было положено Д. И. Менделеевым и Д. П. Коноваловым и развито Н. С. Курнаковым, И. А. Каблуковым, В. А. Кистяковским и др. Работами Н. С. Курнакова и его школы развиты представления о сингулярных точках на диаграммах состав — свойство и введено представление о растворах как однофазных системах переменного состава. Физическая картина взаимодействия между ионами и средой систематически изучалась В. К. Семенченко, А. И. Бродским, Н. А. Измайловым, О. Я. Самойловым, А. Ф. Капустинским, К. Б. Яцимирским. Исследован механизм образования водородных связей в растворах, процессы комплексообразования. Открыты (1950) два типа ионной гидратации. Изучены явления полного и незавершённого переходов протона при кислотно-основном взаимодействии, и создана единая теория кислотно-основного титрования в неводных растворах. С. А. Щукарев исследовал (1940) периодичность свойств соединений в растворах. М. И. Усановичем и А. И. Шатенштейном развита (1930—40) одна из наиболее общих теорий кислот и оснований. Исследования в области кристаллохимии позволили выявить критерии состава упорядоченной системы (Г. Б. Бокий), установить ряд основных закономерностей образования силикатных структур (Н. В. Белов). Органическая кристаллохимия развивается в работах А. И. Китайгородского. Я. К. Сыркиным и М. Е. Дяткиной были начаты и успешно продолжаются их учениками работы по квантовой химии (расчёт энергий и свойств ряда веществ, исследование характера связей в кристаллах и т.д.). Развита наиболее совершенная теория ароматических p-комплексов. И. Б. Берсукер разработал (1974) новый метод расчёта электронного строения и свойств молекулярных систем, содержащих тяжёлые атомы. Изучена и описана эволюция представлений об основных законах химии и важнейших химических понятий (Б. М. Кедров и др.). Неорганическая химия. Работы в этой области были направлены на создание научных основ получения металлических сплавов и других практически важных материалов, освоение солевых ресурсов страны и, в частности, создание технологических схем переработки галургического сырья. Изучение реакций в твёрдых растворах послужило основой создания металлохимии (Н. С. Курнаков, Г. Г. Уразов, И. Н. Лепешков, Н. В. Агеев, Г. И. Чуфаров, И. И. Корнилов, Е. М. Савицкий и др.). Работы по химии и технологии вольфрама и молибдена (Т. М. Сербии, Г. А. Меерсон, В. И. Спицын) завершились организацией производства вольфрамовой и молибденовой проволоки. Разработан метод получения металлического бериллия и его соединений (В. И. Спицын), изучены химические свойства и диаграммы плавкости бериллиевых систем (А. В. Новоселова и сотрудники). Разработаны методы получения оксидов, гидридов, нитридов, карбидов, боридов, силицидов металлов и их растворов друг в друге. На этой основе созданы материалы, обладающие особой твёрдостью и жаропрочностью и др. Предложены способы низкотемпературного синтеза оксонитридов, оксоборидов, оксофосфидов переходных металлов (Ю. А. Буслаев). Весьма плодотворными были исследования в области комплексных соединений. В 1920-х гг. Л. А. Чугаевым синтезированы предсказанные теорией пентаминовые соединения четырёхвалентной платины. Разработаны методы получения всех шести металлов платиновой группы в чистом состоянии. Исследования, ранее успешно проводившиеся Чугаевым, продолжены московской (И. И. Черняев) и ленинградской (А. А. Гринберг) школами. Основные достижения первой школы — разработка теории трансвлияния и развитие химии платины, родия, иридия, урана и трансурановых элементов, второй — создание основ стереохимии палладия и разработка теории кислотно-основных свойств комплексных соединений. Изучен важный класс комплексных веществ — гетерополисоединения молибдена, вольфрама, ниобия и других элементов (А. Л. Давидов, К. А. Бабко, З. Ф. Шахова, В. И. Спицын). Центральным направлением химии комплексных соединений стали исследования взаимного влияния лигандов. Предложена квантовохимическая интерпретация трансвлияния (А. В. Аблов, И. Б. Берсукер). Раскрыт кинетический эффект во взаимной влиянии лигандов и каналов его передачи в комплексах (К. Б. Яцимирский). Разработаны фторидные процессы аффинажа урансодержащих веществ, предложены новые области применения и методы выделения и очистки редких металлов (И. В. Тананаев, Б. Н. Ласкорин). Интенсивно развивались работы (с 1940-х гг.) в области химии полупроводников (Н. П. Сажин, Д. А. Петров, И. П. Алимарин, А. В. Новоселова, Я. И. Герасимов и др.). Решены задачи глубокой очистки германия, кремния, селена, теллура. Синтезированы и изучены соединения типа AIIIBV (нитриды, фосфиды, арсениды), AIIBVI (сульфиды и селениды), AIVBVI (халькогениды) и др. Установлены критерии, позволяющие предсказывать наличие полупроводниковых свойств у многих соединений, внедрены методы производства полупроводниковых материалов. Созданы способы производства материалов для лазеров, ведётся поиск новых материалов для хемолазеров и лазеров на основе жидких стеклообразных сред. Достигнуты существенные результаты в области радиохимии. В 1921 под руководством В. Г. Хлопина и И. Я. Башилова был получен первый в СССР препарат радия; позже были выполнены важные исследования радиоактивных элементов (Б. А. Никитин, А. П. Ратнер, И. Е. Старик и др.). Открыт закон распределения микрокомпонентов между твёрдыми и жидкими фазами, используемый для выделения радиоактивных элементов (В. Г. Хлопин). Разработаны способы обнаружения крайне нестойких молекулярных соединений, в том числе соединений радона. Широко изучена химия плутония, нептуния, америция, кюрия и других трансурановых элементов (В. М. Вдовенко, Б. П. Никольский, В. В. Фомин и др.). Впервые (1967) синтезированы соединения семивалентного нептуния и плутония (Н. Н. Крот, А. Д. Гельман), двухвалентного калифорния, эйнштейния и фермия, одновалентного менделевия (В. И. Спицын, Н. Б. Михеев и сотрудники, 1971). Изучено распределение радиоактивных компонентов в расплавах, на границе двух жидких фаз и на твёрдых адсорбентах. Создан ряд методов получения радиоактивных изотопов и меченых соединений, а также применения их для исследования технически используемых материалов (Ан. Н. Несмеянов). Важные результаты получены в области химии и химической технологии стабильных изотопов лёгких элементов (Н. М. Жаворонков). Синтезированы новые элементы №№ 104—106, предложены пути выделения элементов 106 и 107 (Г. Н. Флёров). Проведён радиохимический анализ космогенных изотопов в лунном реголите, всесторонне изучен лунный грунт, доставленный автоматическими станциями «Луна». Начатые ещё в 20-х гг. работы по изучению естественных соляных богатств страны получили дальнейшее развитие, создана мощная химическая индустрия по производству соды, кислот и щелочей, минеральных удобрений. С. И. Вольфковичем с сотрудниками разработано (1930-е гг.) производство соды и сульфата аммония на основе природного мирабилита. Созданы научные основы переработки фосфоритов и апатитов в фосфор, фосфорные кислоты и удобрения (с 1936 — Э.. В. Брицке, С. И. Вольфкович и др.). Разработаны способы многотоннажного производства разнообразных важных продуктов на основе калийно-магниевых месторождений Соликамска, соляных залежей Поволжья, Приуралья, Средней Азии, Украины и Белоруссии. Систематические работы в области химии силикатов (Н. Б. Белов, П. П. Будников и др.) послужили основанием для создания промышленности многих строит. материалов. Ведутся работы по математическому моделированию химических реакторов, позволяющие создать эффективные агрегаты большой единичной мощности для химических, нефтехимической и нефтеперерабатывающей промышленности (Г. К. Боресков, М. Г. Слинько и др.). Аналитическая химия. Предложены и применены новые методы анализа, например дробный и капельный (1922, Н. А. Тананаев), бесстружковый для анализа металлов, кинетический анализ с использованием каталитических реакций (1958—60, К. Б. Яцимирский), ультрамикроанализ (1959—60, И. П. Алимарин). С 1946—49 развёрнуты работы по совершенствованию и внедрению методов хроматографического анализа (А. В. Киселев, К. В. Чмутов, А. А. Жуховицкий). Получили развитие оптические, электрохимические и радиохимические методы анализа. Впервые использован нейтронный радиоактивационный анализ следов примесей в полупроводниковых элементах. В связи с решением проблем геохимии, биогеохимии, а также космохимии большой вклад в развитие современных методов анализа следов элементов и изучение изотопного состава элементов в минералах и метеоритах внесён А. П. Виноградовым. Особенностью работ школы советских аналитиков является изучение проблем, связанных с применением органических реактивов (Л. М. Кульберг, И. М. Коренман, А. П. Терентьев, В. И. Кузнецов, 1946—50). Органическая химия. Исследования в области органической химии получили в СССР большой размах. Н. Д. Зелинский, С. С. Наметкин, С. В. Лебедев, Ю. Г. Мамедалиев, А. В. Топчиев и их сотрудники систематически изучали углеводороды нефти. Ими были разработаны способы разделения нефти, низкотемпературные процессы получения ацетилена на основе метана, дегидрогенизации бутана и пентанов соответственно до бутадиена и изопрена, этилбензола и изопропилбензола — до стирола и a-метилстирола, циклогексановых углеводородов — до ароматических. Открыты и детально изучены реакции C5и C6-дегидроциклизации алканов в соответствующие циклопентановые, циклопентеновые и ароматические углеводороды (Н. Д. Зелинский, Б. А. Казанский, Б. Л. Молдавский и др.). Эти реакции наряду с дегидрогенизационным катализом Зелинского представляют важнейшее звено в процессах риформинга, в промышленном синтезе бензола и других индивидуальных ароматических углеводородов. Большое число работ выполнено в области гидрогенизации углеводородов: выяснены закономерности гидрогенизационного катализа (С. В. Лебедев. Б. А. Казанский, 1920—30); синтезированы модельные углеводороды по схеме: спирты — олефины — парафины (А. Д. Петров, Р. Я. Левина и др., 1940-е гг.). Принципиально важным для теории этих синтезов было открытие реакций гидрополимеризации и гидроконденсации (Я. Т. Эйдус и Н. Д. Зелинский, 1926—48). Работы в области изомерных превращений ацетиленовых углеводородов в школе А. Е. Фаворского, продолжавшиеся более 50 лет (с 1880-х гг.), позволили установить взаимные переходы между ацетиленовыми, алленовыми и диеновыми соединениями, определить условия их устойчивости, изучить механизм изомеризации и полимеризации диенов, найти структурные закономерности, относящиеся к внутримолекулярным перегруппировкам. Исследования димеризации и полимеризации ацетиленовых углеводородов и гидратации полученных продуктов привели к синтезу ряда ацетиленовых спиртов и карбонильных соединений, а также соединений стероидного типа (И. Н. Назаров, 1940-е гг.), и к промышленному синтезу хлоропренового каучука (А. Л. Клебанский, И. М. Долгопольский, 1932—34). Систематические исследования в области нитрования углеводородов привели к получению многих практически важных нитропроизводных (А. И. Титов, С. С. Новиков, А. В. Топчиев, 1940—60). Разработан т. н. кумольный процесс, позволяющий получать на основе бензола и пропилена (через кумол) ацетон и фенол (П. Г. Сергеев, Р. Ю. Удрис, Б. Д. Кружалов, 1947). Работы в области крекинга и алкилирования углеводородов позволили получать необходимые изоалканы для производства высокооктановых бензинов, а также индивидуальные углеводороды — промежуточные продукты органического синтеза. Универсальные методы синтеза циклопропановых и циклобутановых углеводородов были разработаны Н. Я. Демьяновым, Н. М. Кижнером, Б. А. Казанским и др. Изучен механизм реакций и определены условия жидкофазного окисления парафиновых углеводородов с получением жирных кислот, спиртов, альдегидов. Элементоорганические соединения. Этот раздел химии превратился в СССР в обширную область, занимающую пограничное положение между неорганической и органической химией. В 1920-е гг. преимущественно изучались магнийи натрийорганические соединения (П. П. Шорыгин, Н. Д. Зелинский, В. В. Челинцев, А. П. Терентьев), а затем в практику вошли литийорганические (К. А. Кочешков, Б. М. Михайлов и др.). В 1929 открыт новый метод получения ртутьорганических соединений (реакция Несмеянова), ставший основой синтеза многих органических производных тяжёлых металлов вообще. В 30—40-е гг. на основе этого метода синтезированы соединения олова, свинца, висмута, таллия, цинка, сурьмы и т. д.; изучены их свойства, открыты новые типы реакций (А. Н. Несмеянов, К. А. Кочешков, Р. Х. Фрейдлина, О. Л. Реутов и их сотрудники). Были изучены разнообразные реакции ониевых (хлорониевых, бромониевых и иодониевых) соединений. Исследованиями А. Е. Арбузова заложены основы химии фосфорорганических соединений. Б. А. Арбузовым, М. И. Кабачником, А. В. Кирсановым и их сотрудниками разработаны способы получения фосфорорганических инсектицидов, негорючих полимеров, смазок, пластификаторов. С 40-х гг. стала изучаться химия фторорганических соединений (И. Л. Кнунянц и его школа, Н. Н. Ворожцов, А. В. Фокин, А. Я. Якубович, Б. Л. Дяткин и др.), получены фторсодержащие производные практически всех классов органических соединений. Разработаны доступные, в том числе промышленные, методы синтеза фторорганических соединений; изучены нуклеофильное и электрофильное присоединение к ненасыщенным системам, природа p-связи фторолефинов, вопросы сопряжения, анодное фторирование ароматических соединений, прямое фторирование урацила (для получения противоопухолевого препарата 5-фторурацила) и т. д. Разработаны методы получения органических соединений элементов III гр., в том числе борорганических соединений (Б. М. Михайлов и др.). Исследованы многочисленные реакции ценовых соединений переходных металлов, в том числе получение полимеров на основе производных ферроцена. С работами в области химии элементоорганических соединений тесно связано решение ряда фундаментальных вопросов теории органической химии. А. Н. Несмеяновым и М. И. Кабачником сформулирована теория двойственной реакционной способности соединений, для которых нехарактерно классическое таутомерное равновесие. Изучение распада двойных диазониевых солей с галогенидами металлов и разложение металлоорганических соединений в растворах привело к важным выводам о механизме свободнорадикальных реакций и об относительной активности радикалов (А. Н. Несмеянов, Г. А. Разуваев и их сотрудники). Гетероциклические соединения. Начало работ в этой области положено А. Е. Чичибабиным, изучившим химию пиридина и других азотсодержащих циклов. В 1930—50-е гг. работы В. М. Родионова, Н. Д. Зелинского и Ю. К. Юрьева положили основание научным представлениям о взаимных каталитических превращениях пятичленных гетероциклов. Исследования в области химии фурана и тиофена привели к синтезу их многочисленных практически важных производных (Н. И. Шуйкин, Я. Л. Гольдфарб, С. А. Гиллер, А. П. Терентьев, Ю. А. Жданов). И. Л. Кнунянц нашёл новый тип гетероциклических соединений — пропиотиолактонов. Систематически изучались самые различные азотсодержащие гетероциклы. Синтезированы многие высокоэффективные фармацевтические препараты, инсектофунгициды и другие биологически активные вещества гетероциклического характера. Природные соединения. В 20—40-е гг. работы в этой области были почти всецело посвящены выяснению состава и строения различных природных соединений: терпенов (С. С. Наметкин, А. Е. Арбузов, Б. А. Арбузов), сахаров и целлюлозы (П. П. Шорыгин, С. Н. Данилов), алкалоидов (А. П. Орехов, А. Е. Чичибабин, В. М. Родионов, А. С. Садыков, С. Ю. Юнусов и др.). Но уже в 50-е гг. преимущественное развитие получили работы, заложившие основы биоорганической химии. В качестве объектов исследования на первое место выдвигаются биополимеры (белки, нуклеиновые кислоты, полисахариды) и биорегуляторы (гормоны, витамины, антибиотики). Основными методами исследования при этом стали новейшие физические и физико-химические методы. Проведён ряд успешных работ по выяснению сложной структуры гликопротеидов и природных углеводов (Н. К. Кочетков и др.). Высокомолекулярные соединения. Первые исследования в области синтеза высокомолекулярных соединений выполнены в конце 19 — начале 20 вв. А. М. Бутлеровым, И. Л. Кондаковым, Г. С. Петровым и др. Важное значение для формирования современных представлений о полимеризации имели ранние работы С. В. Лебедева по полимеризации диеновых и алленовых углеводородов (1908—13). Он же впервые (1928) разработал метод синтеза бутадиенового каучука и в 1932 организовал промышленное производство этого материала. С начала 1930-х гг. происходит формирование науки о полимерах как самостоятельной области химии, объединяющей в единое целое и развивающей весь комплекс представлений о путях синтеза высокомолекулярных соединений, их свойствах и свойствах тел, построенных из макромолекул. Существ. роль при становлении науки о полимерах в СССР сыграли труды В. А. Каргина. С. С. Медведевым и его школой изучался механизм радикальной полимеризации: впервые установлена радикальная природа полимеризационных процессов, сформулировано понятие инициирования и передачи цепи при полимеризации. Большое значение имело открытие Б. А. Долгоплоском окислительно-восстановительного инициирования полимеризации, которое легло в основу создания промышленного синтеза каучуков методом эмульсионной полимеризации (1939—52). Значительный вклад в разработку кинетической теории радикальной полимеризации в растворах внесли С. С. Медведев и Х. С. Багдасарьян. Разрабатывались статистические основы полимеризационных процессов (С. Я. Френкель). Созданы способы управления радикальной полимеризацией, основанные на использовании комплексообразователей, изменяющих реакционную способность мономеров и радикалов, осуществлен синтез макромолекул на матрицах из синтетических полимеров, моделирующий матричный биосинтез (В. А. Кабанов и др.). Проведены детальные исследования полимеризации в твёрдой фазе и радиационной полимеризации. Достигнуты успехи в изучении и реализации ионной и координационно-ионной полимеризации. Ещё в ранних исследованиях С. С. Медведевым было впервые доказано образование «живущих» активных центров. Позже им же были установлены важные особенности механизмов этих процессов. Б. А. Долгоплоск и его школа внесли крупный вклад в изучение координационно-ионной полимеризации диенов, в результате чего было создано промышленное производство стереорегулярных каучуков. Позднее им был открыт и исследован стереоспецифический катализ полимеризации диенов под влиянием p-аллильных комплексов переходных металлов, установлен цепной характер полимеризации цикло-олефинов с раскрытием цикла и карбенный механизм реакций этого типа. А. А. Коротков впервые синтезировал 1,4-цис-полиизопрен. Н. С. Ениколопов открыл новый элементарный акт передачи цепи с разрывом, характерный для некоторых процессов полимеризации гетероциклических мономеров. И. Л. Кнунянц был в числе первых исследователей полимеризации e-капролактама. Работы Н. С. Наметкина привели к созданию поликремнийуглеводородов. Исследования В. В. Коршака и его школы легли в основу важных обобщений, касающихся механизма поликонденсации. Разработан ряд новых путей синтеза полимеров (полирекомбинация, дегидрополиконденсация, полипереарилирование, конденсационная полициклотримеризация). В результате получены новые полимерные материалы, в том числе термостойкие. Значит. успехи достигнуты в области синтеза и технологии элементоорганических полимеров благодаря оригинальным исследованиям К. А. Андрианова, впервые (1937) осуществившего синтез полиорганосилоксанов. В дальнейшем им и его школой разработаны основные принципы синтеза полимеров с неорганическими цепями молекул, в том числе полиорганометаллосилоксанов, синтезированы термостойкие кремнийорганические полимеры, нашедшие широкое применение. Получены жесткоцепные термостойкие полимеры методами полициклоконденсации и выяснены механизмы этих процессов (М. М. Котон и др.). Разработана статистическая теория реакционной способности звеньев полимерной цепи с учётом эффекта соседних групп, впервые установлены зависимости свойств привитых и блоксополимеров от их надмолекулярной структуры и от структуры составляющих полимерных компонентов. В этих работах заложены основы структурно-химической модификации полимеров (Н. А. Платэ и др.). Созданы методы радиационно-химического модифицирования полимеров путём прививки мономеров из газовой фазы. Исследованы особенности радиационно-химических превращений полимеров (В. Л. Карпов и др.). Изучены закономерности вулканизации каучуков (Б. А. Догадкин). Крупный вклад в области химии и химической модификации целлюлозы внесли С. Н. Данилов и З. А. Роговин. Успешно разрабатываются проблемы стабилизации полимерных материалов (Н. М. Эмануэль, Г. А. Разуваев). В области исследований физических свойств полимеров основополагающее значение имели труды А. П. Александрова, П. П. Кобеко, Ю. С. Лазуркина, в которых впервые (конец 30-х гг.) была сформулирована кинетическая концепция релаксационных переходов в полимерах как в особой разновидности аморфных тел. Эта концепция получила детальное развитие в работах В. А. Каргина и его школы; она была доведена до стройной системы представлений о трёх физических состояниях аморфных полимеров. Исследования связи между физико-химическими свойствами полимеров и их строением на молекулярном и надмолекулярном уровнях привели к нахождению эффективных способов модификации пластмасс, каучуков и химических волокон. В. А. Каргин предложил концепцию о роли надмолекулярной организации полимеров (совместно с А. И. Китайгородским и Г. Л. Слонимским) и обосновал структурную механику полимерных тел. С. Н. Журков сформулировал и развил представления о термофлуктуационной природе прочности и механической долговечности полимеров. Развиты представления о закономерностях изменения термомеханических свойств полимеров при их пластификации. Исследованы закономерности одноосного течения полимеров и открыто явление химического течения. Г. В. Виноградовым выполнены важные работы в области реологии полимеров. В. Ф. Евстратов исследовал связь структуры и свойств синтетических каучуков с эксплуатационными характеристиками получаемых из них резин. Для развития теории растворов полимеров большое значение имело установление в конце 1930-х гг. явления их термодинамической обратимости (В. А. Каргин совместно с С. П. Папковым и З. А. Роговиным). В 50—70-х гг. исследованы новые классы полимеров, образующих жидкокристаллические структуры. В. Н. Цветков развил общие и экспериментальные подходы к определению конформации отдельных макромолекул. Первая количественная молекулярная теория конформационного состояния полимерных цепей предложена Я. И. Френкелем и С. Е. Бреслером. М. В. Волькенштейн развил поворотно-изомерную концепцию гибкости макромолекул. Значительное развитие получили исследования в области полимеров с системой сопряжения (А. В. Топчиев, С. П. Папков, Б. А. Кренцель); фармакологически активных полимеров и полимеров биомедицинского назначения (С. Н. Ушаков и др.); полимерных систем, моделирующих различные функции биополимеров: катализ, самосборку упорядоченных агрегатов из комплементарных макромолекул и др. Развитие химической науки и производства происходит в условиях международного сотрудничества и укрепляющихся деловых контактов советских химиков с учёными других социалистических стран. Десятки химических институтов и предприятий осуществляют двустороннее сотрудничество со многими организациями и предприятиями стран — членов СЭВ. Так, в результате сотрудничества химиков и машиностроителей СССР и ГДР разработан и освоен высокоавтоматизированный процесс производства полиэтилена в трубчатом реакторе мощностью 50— 70 тыс. т/год, ведутся работы над созданием производства полиэтилена низкой плотности мощностью технической линии более 100 тыс. т/год. Советские и чехословацкие химики совместно разработали технологический процесс получения пирокатехина совместно со специалистами Венгрии эффективно ведутся работы по созданию производства олефинов и продуктов их переработки. Сотрудничество советских и болгарских химиков в разработке процесса конверсии окиси углерода привело к созданию новых высокопроизводительных катализаторов с увеличенным сроком службы. С румынскими химиками проводится совместное проектирование и создание мощностей по производству хлора и каустической соды. Сотрудничество в области химии между странами — членами СЭВ успешно координируется рядом специально созданных организаций. Советские учёные активно сотрудничают в международных организациях, в частности Национальный комитет советских химиков при АН СССР входит (с 1930) в Международный союз чистой и прикладной химии, осуществляющий связи между научными химическими центрами 45 стран. Участие советских учёных-химиков в международных химических конгрессах, конференциях и симпозиумах по важнейшим проблемам химии способствует прогрессу химической науки, укрепляет международное сотрудничество учёных. Периодические издания: «Доклады АН СССР. Серия Химия» (с 1965), «Известия АН СССР. Серия химическая» (с 1936), «Известия АН СССР. Неорганические материалы» (с 1965), «Журнал физической химии» (с 1930), «Журнал общей химии» (с 1931), «Коллоидный журнал» (с 1935), «Журнал аналитической химии» (с 1946), «Журнал органической химии» (с 1965), «Высокомолекулярные соединения» (с 1959), «Радиохимия» (с 1959), «Химия высоких энергий» (с 1967), «Химия гетероциклических соединений» (с 1965), «Заводская лаборатория» (с 1932), «Химия и жизнь» (с 1965), «Химическая промышленность» (с 1944), «Журнал Всесоюзного химического общества им. Д. И. Менделеева» (с 1956) и др. См. Аналитическая химия, Биоорганическая химия, Биохимия, Валентность, Катализ, Кинетика химическая, Коллоидная химия, Неорганическая химия, Органическая химия, Периодическая система элементов, Плазмохимия, Радиационная химия, Радиохимия, Термодинамика химическая, Физическая химия, Фотохимия, Химическая физика, Химическая связь, Химические журналы, Химия, Электрохимия. В. И. Кузнецов. Науки о Земле Естественные науки Математика Астрономия Физические науки Механика Физико-географические науки Геодезия Картография Метеорология Океанология Горные науки Биологические науки Почвоведение Сельскохозяйственные науки Медицинские науки |
||||||||||||||||||||||||||||||||||||||||||||||
|